[1] |
Li JJ, Ebied M, Xu J, et al. Current Approaches to Bone Tissue Engineering: The Interface between Biology and Engineering[J]. Adv Healthc Mater, 2018, 7(6): e1701061.
|
[2] |
吴子健,胡昭端,谢有琼,等. 3D打印技术与骨组织工程研究文献计量及研究热点可视化分析[J]. 中国组织工程研究,2021, 25(4): 564-569.
|
[3] |
Toosi S, Behravan N, Behravan J. Nonunion fractures, mesenchymal stem cells and bone tissue engineering[J]. J Biomed Mater Res A, 2018, 106(9): 2552-2562.
|
[4] |
Crane GM, Ishaug SL, Mikos AG. Bone tissue engineering[J]. Nat Med, 1995, 1(12): 1322-1324.
|
[5] |
Lim J, You M, Li J, et al. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds[J]. Mater Sci Eng C Mater Biol Appl, 2017, 79: 917-929.
|
[6] |
Rezvani Z, Venugopal JR, Urbanska AM, et al. A bird′s eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: Current state-of-the-art, emerging directions and future trends[J]. Nanomedicine, 2016, 12(7): 2181-2200.
|
[7] |
李俊娴. 国外学术英语研究的文献计量分析[J]. 陕西教育(高教), 2021(6): 75-76.
|
[8] |
刘沛东,贺权,张城铭,等. 膝前外侧韧带的全球研究现状及趋势:文献计量学及可视化技术分析[J]. 中华解剖与临床杂志,2021, 26(2): 168-176.
|
[9] |
Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds[J]. Trends Biotechnol, 2012, 30(10): 546-554.
|
[10] |
魏莉,马保金,邵金龙,等. 羟基磷灰石复合材料在骨组织工程中应用的研究进展[J]. 四川大学学报(医学版), 2021, 52(3): 357-363.
|
[11] |
Goodarzi H, Hashemi-Najafabadi S, Baheiraei N, et al. Preparation and Characterization of Nanocomposite Scaffolds (Collagen/β-TCP/SrO) for Bone Tissue Engineering[J]. Tissue Eng Regen Med, 2019, 16(3): 237-251.
|
[12] |
Xu F, Ren H, Zheng M, et al. Development of biodegradable bioactive glass ceramics by DLP printed containing EPCs/BMSCs for bone tissue engineering of rabbit mandible defects[J]. J Mech Behav Biomed Mater, 2020, 103: 103532.
|
[13] |
Chen Y, Frith JE, Dehghan-Manshadi A, et al. Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering[J]. J Mech Behav Biomed Mater, 2017, 75: 169-174.
|
[14] |
Parai R, Bandyopadhyay-Ghosh S. Engineered bio-nanocomposite magnesium scaffold for bone tissue regeneration[J]. J Mech Behav Biomed Mater, 2019, 96: 45-52.
|
[15] |
廖欣宇,王福科,王国梁. 骨组织工程支架的进展与挑战[J]. 中国组织工程研究,2021, 25(28): 4553-4560
|
[16] |
狄嘉伟,李想,谢瑞敏,等. 透明质酸及其衍生物影响成骨细胞功能:分子机制与应用价值[J]. 中国组织工程研究,2018, 22(18): 2927-2932.
|
[17] |
徐海伦,满振涛,李伟. 丝素蛋白生物支架在骨组织工程中的应用[J]. 中国矫形外科杂志,2020, 28(23): 2165-2169.
|
[18] |
侯雪峰,柏鑫,高玉海,等. 负载淫羊藿苷的骨缺损修复支架材料研究进展[J]. 中国骨质疏松杂志,2021, 27(5): 771-775.
|
[19] |
叶鹏,骆付丽,刘安平,等. 缓释左氧氟沙星三维丝素蛋白/壳聚糖/纳米羟基磷灰石复合骨组织工程支架材料的制备与表征[J]. 中国组织工程研究,2019, 23(14): 2147-2155.
|
[20] |
崔宇韬,李容杭,刘贺,等. 双膦酸盐药物复合支架在骨缺损局部的应用[J]. 中国组织工程研究,2019, 23(10): 1617-1625.
|
[21] |
孙浩远,宋科官. 纳米羟基磷灰石复合物治疗骨缺损的研究进展[J]. 中国骨科临床与基础研究杂志,2019, 11(5): 300-307.
|
[22] |
傅娜,罗晓丁,焦铁军,等. 骨组织工程中应用的聚己内酯-聚乙二醇-聚己内酯静电纺丝支架[J]. 中国组织工程研究,2019, 23(22): 3445-3450
|
[23] |
Shadjou N, Hasanzadeh M. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress[J]. Mater Sci Eng C Mater Biol Appl, 2015, 55: 401-409.
|
[24] |
Purohit SD, Bhaskar R, Singh H, et al. Development of a nanocomposite scaffold of gelatin-alginate-graphene oxide for bone tissue engineering[J]. Int J Biol Macromol, 2019, 133: 592-602.
|
[25] |
Wubneh A, Tsekoura EK, Ayranci C, et al. Current state of fabrication technologies and materials for bone tissue engineering[J]. Acta Biomater, 2018, 80: 1-30.
|
[26] |
Kim HD, Amirthalingam S, Kim SL, et al. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering[J]. Adv Healthc Mater, 2017, 6(23).
|
[27] |
Müller M, Fisch P, Molnar M, et al. Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2020, 108: 110510.
|
[28] |
Dejob L, Toury B, Tadier S, et al. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review[J]. Acta Biomater, 2021, 123: 123-153.
|
[29] |
倪硕,李澎,张卫国,等. 制备软骨组织工程支架的方法[J]. 中国组织工程研究,2014, 18(3): 446-451.
|
[30] |
尹浩月,邓久鹏,马丽娟,等. 冷冻干燥法制备聚乳酸多孔支架[J]. 生物医学工程研究,2019, 38(2): 215-218, 246.
|
[31] |
冷一,李祖浩,任广凯,等. 生物活性支架在骨组织工程中的应用及进展[J]. 中国组织工程研究,2019, 23(6): 963-970.
|
[32] |
邵擎东,汪铮,李宇飞,等. 血管基质成分联合脱细胞骨基质-壳聚糖支架修复桡骨缺损[J]. 中国组织工程研究,2017, 21(6): 843-847.
|
[33] |
Qu M, Wang C, Zhou X, et al. Multi-Dimensional Printing for Bone Tissue Engineering[J]. Adv Healthc Mater, 2021, 10(11): e2001986.
|
[34] |
Babilotte J, Guduric V, Le Nihouannen D, et al. 3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization[J]. J Biomed Mater Res B Appl Biomater, 2019, 107(8): 2579-2595.
|
[35] |
吕晶同,施又兴,王云蛟,等. 腱-骨结合部结构化界面修复的研究进展[J]. 中国修复重建外科杂志,2019, 33(9): 1064-1070.
|
[36] |
Valtanen RS, Yang YP, Gurtner GC, et al. Synthetic and Bone tissue engineering graft substitutes: What is the future?[J]. Injury, 2021, 52 Suppl 2: S72-S77.
|
[37] |
Lim J, You M, Li J, et al. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds[J]. Mater Sci Eng C Mater Biol Appl, 2017, 79: 917-929.
|