切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2017, Vol. 12 ›› Issue (02) : 103 -108. doi: 10.3877/cma.j.issn.1673-9450.2017.02.006

所属专题: 文献

论著

脂多糖诱导对内皮细胞释放内皮细胞微粒的影响
唐佳俊1, 徐继平2, 郑捷新1,(), 张勤1   
  1. 1. 200025 上海交通大学医学院附属瑞金医院灼伤整形科
    2. 201499 上海市奉贤区中心医院,上海交通大学附属第六人民医院南院骨科
  • 收稿日期:2017-01-13 出版日期:2017-04-01
  • 通信作者: 郑捷新

Changes of endothelial microparticles induced by lipopolysaccharide

Jiajun Tang1, Jiping Xu2, Jiexin Zheng1,(), Qin Zhang1   

  1. 1. Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
    2. Department of Orthopaedics, Shanghai Fengxian District Central Hospital, the Sixth People′s Hospital South Campus Affiliated Shanghai Jiao Tong University, Shanghai 201499, China
  • Received:2017-01-13 Published:2017-04-01
  • Corresponding author: Jiexin Zheng
  • About author:
    Corresponding author: Zheng Jiexin, Email:
引用本文:

唐佳俊, 徐继平, 郑捷新, 张勤. 脂多糖诱导对内皮细胞释放内皮细胞微粒的影响[J]. 中华损伤与修复杂志(电子版), 2017, 12(02): 103-108.

Jiajun Tang, Jiping Xu, Jiexin Zheng, Qin Zhang. Changes of endothelial microparticles induced by lipopolysaccharide[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2017, 12(02): 103-108.

目的

探讨脂多糖刺激对内皮细胞释放内皮细胞微粒(EMP)的影响。

方法

取人脐静脉内皮细胞培养,分为正常对照组(无脂多糖诱导)和不同浓度脂多糖(浓度分别为0.1、1.0、10.0、20.0 μg/mL)组,脂多糖诱导24 h后收集细胞培养液并消化内皮细胞制成细胞悬液。离心法提取细胞培养液内的EMP,加入特异性荧光抗体(anti-CD31-CFS、anti-CD51-PE、anti-CD54-FITC、anti-CD144-PE、anti-CD62E-APC)。采用流式细胞仪检测脂多糖诱导内皮细胞释放荧光标记EMP的变化以及内皮细胞的凋亡率。对数据行方差分析、t检验、Dunnett-t检验。

结果

对照组和0.1、1.0、10.0、20.0 μg/mL脂多糖组CD31EMP数量水平分别为(1.23±0.43)×106、(1.92±0.64)×106、(2.55±0.78)×106、(3.96±0.78)×106、(6.96±1.80)×106,组间比较差异有统计学意义(F=5.83,P<0.05),CD31EMP占总体EMP的比值分别为(4.57±1.33)%、(5.92±1.24)%、(6.93±1.61)%、(7.44±1.09)%、(13.44±3.39)%,组间比较差异有统计学意义(F=3.43,P<0.05)。与对照组比较,10.0、20.0 μg/mL脂多糖组CD31EMP数量水平明显升高,差异均有统计学意义(t=-3.06、-3.61,P值均小于0.05);20.0 μg/mL脂多糖组CD31EMP数量水平高于0.1、1.0 μg/mL脂多糖组,差异均有统计学意义(P值均小于0.05)。CD31EMP占总体EMP的比值20.0 μg/mL脂多糖组高于对照组和0.1 μg/mL脂多糖组,差异均有统计学意义(P值均小于0.05)。对照组和0.1、1.0、10.0、20.0 μg/mL脂多糖组CD54EMP数量水平分别为(4.70±1.01)×106、(9.20±3.34)×106、(8.83±1.70)×106、(17.18±3.78)×106、(17.73±4.98)×106,组间比较差异有统计学意义(F=3.35,P<0.05)。与对照组比较,10.0、20.0 μg/mL脂多糖组CD54EMP数量水平明显升高,差异均有统计学意义(t=-3.19、-3.00,P值均小于0.05)。对照组和0.1、1.0、10.0、20.0 μg/mL脂多糖组CD144EMP数量水平分别为(3.93±1.22)×106、(6.80±1.36)×106、(8.03±2.53)×106、(17.22±4.52)×106、(11.05±5.80)×106,组间比较差异有统计学意义(F=3.17,P<0.05)。10.0 μg/mL脂多糖组CD144EMP数量水平高于对照组及0.1、1.0 μg/mL脂多糖组,差异均有统计学意义(P值均小于0.05)。20.0 μg/mL脂多糖组CD62EEMP数量水平为(2.95±0.26)×106,明显高于对照组(1.26±0.26)×106,差异有统计学意义(t=-4.45,P<0.05)。各组内皮细胞凋亡率比较差异无统计学意义(F=0.17,P>0.05)。

结论

脂多糖损伤内皮细胞可表现为表达特异性标记的EMP的大量释放,可能是脓毒症内皮细胞损伤机制之一。

Objective

To investigate the significance of changes of endothelial microparticle(EMP) induced by lipopolysaccharide.

Methods

Human umbilical vein endothelial cell (HUVEC) was cultured. The cells were divided into control group (without lipopolysaccharide) and lipopolysaccharide group (0.1, 1.0, 10.0, 20.0 μg/mL). The cell culture supernatant were collected after 24 h incubation with or without lipopolysaccharide. The cells were digested and suspended. EMP was collected by series of centrifugation and incubated with CFS anti-CD31, PE anti-CD51, FITC anti-CD54, PE anti-CD144, APC anti-CD62E. Flow cytometry was performed to analyze by detecting the expression of the fluorescenct labeling EMP and the measurement of apoptosis of endotheliums. Data were processed with analysis of variance, t and Dunnett-t test.

Results

The counts of CD31+ EMP in control group and lipopolysaccharide group (0.1, 1.0, 10.0, 20.0 μg/mL) were respectively (1.23±0.43)×106, (1.92±0.64)×106, (2.55±0.78)×106, (3.96±0.78)×106, (6.96±1.80)×106, there were significant differences (F=5.83, P<0.05), and the ratios of CD31+ EMP were respectively (4.57±1.33)%, (5.92±1.24)%, (6.93±1.61)%, (7.44±1.09)%, (13.44±3.39)%, there were significant differences (F=3.43, P<0.05). Compared with that of control group, the counts of CD31+ EMP were obviously increased in 10.0, 20.0 μg/mL lipopolysaccharide groups (with t value respectively -3.06, -3.61, P values were less than 0.05). In 20.0 μg/mL lipopolysaccharide group, the counts of CD31+ EMP were higher than that in 0.1, 1.0 μg/mL lipopolysaccharide groups (P<0.05), and the ratios of CD31+ EMP were higher than that in control group (t=-2.74, P<0.05) and in 0.1 μg/mL lipopolysaccharide group (P<0.05). The counts of CD54+ EMP in control group and lipopolysaccharide group (0.1, 1.0, 10.0, 20.0 μg/mL) were respectively (4.70±1.01)×106, (9.20±3.34)×106, (8.83±1.70)×106, (17.18±3.78)×106, (17.73±4.98)×106, there were significant differences (F=3.35, P<0.05). Compared with that of control group, the counts of CD54+ EMP were obviously increased in 10.0, 20.0 μg/mL lipopolysaccharide groups (with t value respectively -3.19, -3.00, P values were less than 0.05). The counts of CD144+ EMP in control group and lipopolysaccharide group (0.1, 1.0, 10.0, 20.0 μg/mL) were respectively (3.93±1.22)×106, (6.80±1.36)×106, (8.03±2.53)×106, (17.22±4.52)×106, (11.05±3.80)×106, there were significant differences (F=3.17, P<0.05). The counts of CD144+ EMP were higher in 10.0 μg/mL lipopolysaccharide group than that in control group and that in 0.1, 1.0 μg/mL lipopolysaccharide groups (P values were less than 0.05). In 20.0 μg/mL lipopolysaccharide group, the counts of CD62E+ EMP were (2.95±0.26)×106, which were higher than that in control group whose counts were (1.26±0.26)×106(t=-4.45, P<0.05). Comparing the apoptosis rate of endothelial cell in each group, there were no significant differences (F=0.17, P>0.05).

Conclusion

The increase of EMP levels suggests that the specific bioactivity of each antigen-positive EMP may participate in regulating endothelial function induced by lipopolysaccharide, and they may be one of the mechanisms of endothelial dysfunction in sepsis.

表1 CD31EMP数量和比值变化(±s)
表2 CD54EMP数量和比值变化(±s)
表3 CD144EMP数量和比值变化(±s)
表4 CD62EEMP数量和比值变化(±s)
表5 CD51EMP数量和比值变化(%,±s)
表6 内皮细胞凋亡率变化(±s)
1
唐佳俊,郇京宁. 烧伤患者血小板微粒的变化及临床意义[J]. 中华创伤杂志,2012, 28(10):881-884.
2
Arteaga RB, Chirinos JA, Soriano AO, et al. Endothelial microparticles and platelet and leukocyte activation in patients with the metabolic syndrome[J]. Am J Cardiol, 2006, 98(1):70-74.
3
Faure V, Dou L, Sabatier F, et al. Elevation of circulating endothelial microparticles in patients with chronic renal failure[J]. J Thromb Haemost, 2006, 4(3):566-573.
4
Brodsky SV, Malinowski K, Golightly M, et al. Plasminogen activator inhibitor-1 promotes formation of endothelial microparticles with procoagulant potential[J]. Circulation, 2002, 106(18):2372-2378.
5
Distler JH, Jüngel A, Huber LC, et al. The induction of matrix metalloproteinase and cytokine expression in synovial fibroblasts stimulated with immune cell microparticles[J]. Proc Natl Acad Sci U S A, 2005, 102(8):2892-2897.
6
Whaley JG, Tharakan B, Smith B, et al. (-)-Deprenyl inhibits thermal injury-induced apoptotic signaling and hyperpermeability in microvascular endothelial cells[J]. J Burn Care Res, 2009, 30(6):1018-1027.
7
Sampath V, Radish AC, Eis AL, et al. Attenuation of lipopolysaccharide-induced oxidative stress and apoptosis in fetal pulmonary artery endothelial cells by hypoxia[J]. Free Radic Biol Med, 2009, 46(5):663-671.
8
Karahashi H, Michelsen KS, Arditi M. Lipopolysaccharide-induced apoptosis in transformed bovine brain endothelial cells and human dermal microvessel endothelial cells: the role of JNK[J]. J Immunol, 2009, 182(11):7280-7286.
9
Chatterjee A, Snead C, Yetik-Anacak G, et al. Heat shock protein 90 inhibitors attenuate LPS-induced endothelial hyperpermeability[J]. Am J Physiol Lung Cell Mol Physiol, 2008, 94(4):L755-L763.
10
Gao C, Tang J, Li R, et al. Specific inhibition of AQP1 water channels in human pulmonary microvascular endothelial cells by small interfering RNAs[J]. J Trauma Acute Care Surg, 2012, 72(1):150-161.
11
Zhang L, Li HY, Li H, et al. Lipopolysaccharide activated phosphatidylcholine-specific phospholipase C and induced IL-8 and MCP-1 production in vascular endothelial cells[J]. J Cell Physiol, 2011, 226(6):1694-1701.
12
Komarova YA, Mehta D, Malik AB. Dual regulation of endothelial junctional permeability[J]. Sci STKE, 2007, 2007(412):re8.
13
Florey O, Durgan J, Muller W. Phosphorylation of leukocyte PECAM and its association with detergent-resistant membranes regulate transendothelial migration[J]. J Immunol, 2010, 185(3):1878-1886.
14
Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm[J]. Cell, 1994, 76(2):301-314.
15
Sultan S, Gosling M, Nagase H, et al. Shear stressinduced shedding of soluble intercellular adhesion molecule-1 from saphenous vein endothelium[J]. FEBS Lett, 2004, 564(1/2):161-165.
16
Leone M, Boutière-Albanèse B, Valette S, et al. Cell adhesion molecules as a marker reflecting the reduction of endothelial activation induced by glucocorticoids[J]. Shock, 2004, 21(4):311-314.
17
Sabatier F, Roux V, Anfosso F, et al. Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor-dependent procoagulant activity[J]. Blood, 2002, 99(11):3962-3970.
18
Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis[J]. Physiol Rev, 2004, 84(3):869-901.
19
Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability[J]. Physiol Rev, 2006, 86(1):279-367.
20
Derosa G, Maffioli P. A review about biomarkers for the investigation of vascular function and impairment in diabetes mellitus[J]. Vasc Health Risk Manag, 2016, 12:415-419.
21
Meng JB, Lai ZZ, Xu XJ, et al. Effects of Early Continuous Venovenous Hemofiltration on E-selectin,Hemodynamic Stability, and Ventilatory Function in Patients with Septic-Shock-Induced Acute Respiratory Distress Syndrome[J].Biomed Res Int, 2016; 2016:7463130.
22
Jimenez JJ, Jy W, Mauro LM, et al. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis[J].Thromb Res, 2003, 109(4):175-180.
[1] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[2] 祁焕康, 包俊杰, 张婧, 田琰, 卓么加, 祁万乐. 富血小板血浆联合微粒皮移植在高原地区老年慢性小创面中的临床研究[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 32-38.
[3] 蔡维霞, 曹涛, 赵明, 肖丹, 贾艳慧, 王璟, 张月, 王克甲, 韩军涛, 胡大海. Notch信号通路对烧伤大鼠血清诱导的肺血管内皮细胞细胞间黏附分子-1的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 292-299.
[4] 罗丽芳, 刘哲夫, 董兵, 刘晓玲, 丘雨旻, 周喆, 何江, 夏文豪. 达格列净改善高糖诱导的人脐静脉内皮细胞功能的机制研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 10-18.
[5] 李婧娴, 韩兴龙, 涂元媛, 胡士军, 于淼, 雷伟. 内皮祖细胞在血管损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 176-180.
[6] 胡敏洁, 王思贤, 王永煜. 人诱导多能干细胞及其在血管相关疾病模型中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 167-175.
[7] 洪权. 从血管内皮探讨糖尿病肾病的进展机制[J]. 中华肾病研究电子杂志, 2023, 12(01): 60-60.
[8] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[9] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
[10] 王洁琼, 王慧霞, 赵慧颖, 安友仲. 血管紧张素转换酶2对人肺微血管内皮细胞炎性损伤的调控作用[J]. 中华重症医学电子杂志, 2023, 09(01): 78-83.
[11] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[12] 韦可艺, 徐昌青, 杨静. 纳米药物在炎症性肠病生物制剂靶向治疗中的应用[J]. 中华消化病与影像杂志(电子版), 2022, 12(06): 367-372.
[13] 陶璐, 初楠, 韩洁, 白春英, 逄雯丽, 余海源. 血清PECAM-1、Sirt1水平与2型糖尿病患者颈动脉粥样硬化的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 291-296.
[14] 岑妍慧, 高月, 林江, 刘鹏, 贾微, 杨瑞, 黄威, 刘鑫, 黄泽萍, 宁志莹. 水解南珠液通过Wnt/β-catenin通路调节细胞自噬对人微血管内皮细胞氧化应激损伤的影响[J]. 中华临床医师杂志(电子版), 2023, 17(01): 72-79.
[15] 李少莹, 文莹, 贾翠萍, 张媛, 邓伟豪. 抑制糖毒性通路对细胞线粒体功能障碍的影响和潜在意义[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 65-70.
阅读次数
全文


摘要