切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2018, Vol. 13 ›› Issue (06) : 432 -438. doi: 10.3877/cma.j.issn.1673-9450.2018.06.007

所属专题: 文献

论著

氯化钴诱导缺氧对血管周细胞血管生成素-1表达影响的研究
张迪1, 胡艳阁1, 耿乐乐1, 方勇1,()   
  1. 1. 200011 上海交通大学医学院附属第九人民医院烧伤整形科
  • 收稿日期:2018-11-03 出版日期:2018-12-01
  • 通信作者: 方勇
  • 基金资助:
    国家自然科学基金项目(81272081)

Effect of cobalt chloride induced hypoxia on expression of angiopoietin-1 in pericytes

Di Zhang1, Yange Hu1, Lele Geng1, Yong Fang1,()   

  1. 1. Department of Burns and Plastic Surgery, Shanghai Ninth People′s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
  • Received:2018-11-03 Published:2018-12-01
  • Corresponding author: Yong Fang
  • About author:
    Corresponding author: Fang Yong, Email:
引用本文:

张迪, 胡艳阁, 耿乐乐, 方勇. 氯化钴诱导缺氧对血管周细胞血管生成素-1表达影响的研究[J]. 中华损伤与修复杂志(电子版), 2018, 13(06): 432-438.

Di Zhang, Yange Hu, Lele Geng, Yong Fang. Effect of cobalt chloride induced hypoxia on expression of angiopoietin-1 in pericytes[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2018, 13(06): 432-438.

目的

检测缺氧环境下缺氧诱导因子-1α(HIF-1α)、血管内皮生长因子(VEGF)和血管生成素-1(Ang-1)表达变化,探讨氯化钴诱导缺氧对血管周细胞Ang-1表达的影响。

方法

体外培养人脑血管周细胞,予不同浓度氯化钴诱导缺氧环境,分为对照组和试验组。对照组使用不含氯化钴的血管周细胞培养基培养;试验组使用血管周细胞培养基溶解六水合氯化钴稀释至终浓度分别为50 μmol/L(50 μmol/L氯化钴组)、100 μmol/L(100 μmol/L氯化钴组)、200 μmol/L(200 μmol/L氯化钴组)、300 μmol/L(300 μmol/L氯化钴组)、400 μmol/L(400 μmol/L氯化钴组)。通过蛋白质印迹法检测HIF-1α蛋白表达、逆转录-聚合酶链反应(RT-PCR)法检测HIF-1α、Ang-1 mRNA合成以及酶联免疫吸附测定(ELISA)法检测VEGF、Ang-1蛋白分泌。对数据行单因素方差分析、Dunnett-t检验及t检验。

结果

对照组和各试验组(50、100、200、300、400 μmol/L氯化钴组)HIF-1α蛋白表达组间差异有统计学意义(F=215.7,P<0.05);HIF-1α蛋白表达随氯化钴浓度先升高后降低,在200 μmol/L处相对灰度达到峰值8.6140±0.3445,200 μmol/L氯化钴组相对灰度值与对照组,50、100、300、400 μmol/L氯化钴组比较,差异均有统计学意义(t=38.28、22.18、10.16、5.60、25.47,P值均小于0.05)。对照组与试验组HIF-1α mRNA表达组间比较,差异有统计学意义(F=195.5,P<0.05);HIF-1α mRNA表达呈氯化钴浓度依赖性降低,400 μmol/L氯化钴组HIF-1α mRNA表达达到最低值5.107×10-3±8.138×10-5,与对照组,50、100、200 μmol/L氯化钴组比较,差异均有统计学意义(t=21.40、17.75、14.96、5.36,P值均小于0.05)。对照组与试验组VEGF蛋白表达组间比较,差异有统计学意义(F=93.34,P<0.05);VEGF蛋白表达随氯化钴浓度先升高后降低,在200 μmol/L处VEGF蛋白表达达到峰值(901.000±6.798) pg/mL,200 μmol/L氯化钴组与对照组,50、100、300、400 μmol/L氯化钴组比较,差异均有统计学意义(t=27.70、10.56、4.65、10.49、17.97,P值均小于0.05)。对照组与试验组Ang-1蛋白表达组间比较,差异有统计学意义(F=279.3,P<0.05);Ang-1蛋白分泌随氯化钴浓度升高先增加,在100 μmol/L处达到峰值(4 364.0±117.3) ng/mL,随后蛋白分泌随氯化钴浓度升高逐渐减少,100 μmol/L氯化钴组与对照组,50、200、300、400 μmol/L氯化钴组组间比较,差异均有统计学意义(t=8.57、4.33、17.03、19.48、23.30,P值均小于0.05)。对照组与试验组Ang-1 mRNA表达组间比较,差异有统计学意义(F=172.0,P<0.05);Ang-1 mRNA表达随氯化钴浓度升高先增加,在100 μmol/L处达到峰值6.732×10-4±7.140×10-6,随后mRNA表达随氯化钴浓度升高逐渐减少,100 μmol/L氯化钴组与对照组,200、300、400 μmol/L氯化钴组组间比较,差异均有统计学意义(t=10.05、20.21、110.20、34.25,P值均小于0.05)。

结论

轻度缺氧环境下,血管周细胞Ang-1表达随缺氧程度加剧而受到促进;重度缺氧环境下,血管周细胞Ang-1表达随缺氧程度加剧而受到抑制。

Objective

Detecting the expression changes of hypoxia inducible factor-1α(HIF-1α), vascular endothelial growth factor(VEGF)and angiopoietin-1(Ang-1) under anoxic environment, to investigate the effect of cobalt chloride induced hypoxia on expression of Ang-1 in pericytes.

Methods

Human brain vascular pericytes cultured in vitro, with different concentrations of cobalt chloride induced by hypoxia. The cultured cells were divided into control group and experimental groups containing different concentrations of cobalt chloride. The control group used the pericyte medium without cobalt chloride. In the experimental groups, cobalt chloride was dissolved by pericyte medium and diluted to the final concentration of 50 μmol/L (50 μmol/L cobalt chloride group), 100 μmol/L (100 μmol/L cobalt chloride group), 200 μmol/L (200 μmol/L cobalt chloride group), 300 μmol/L (300 μmol/L cobalt chloride group) and 400 μmol/L (400 μmol/L cobalt chloride group). The expression of HIF-1α protein was detected by Western-blotting, the mRNA synthesis of HIF-1α and Ang-1 were detected by reverse transcription-polymerase chain reaction (RT-PCR), and the secretion of VEGF and Ang-1 were detected by enzyme-linked immuno sorbent assay (ELISA). Data were processed with one way analysis of variance, Dunnett-t test and t test.

Results

The expression of HIF-1α protein in control group and experimental groups (50, 100, 200, 300, 400 μmol/L cobalt chloride group) was significantly different(F=215.7, P<0.05). The expression of HIF-1α protein increased with the concentration of cobalt chloride first and then decreased. The relative gray value of the relative gray level reached 8.6140±0.3445 at 200 μmol/L. The relative gray value of 200 μmol/L cobalt chloride group was significantly different from those of other groups (t=38.28, 22.18, 10.16, 5.60, 25.47; with P values below 0.05). The expression of HIF-1α mRNA in control group and experimental groups was significantly different, the difference was statistically significant(F=195.5, P<0.05). The expression of HIF-1α mRNA decreased as the concentration of cobalt chloride increased, and the HIF-1α mRNA expression in the 400 μmol/L cobalt chloride group reached the lowest value 5.107×10-3±8.138×10-5. The expression of HIF-1α mRNA in 400 μmol/L cobalt chloride group were significantly different from control group and 50, 100, 200 μmol/L cobalt chloride group, the difference was statistically significant (t=21.40, 17.75, 14.96, 5.36; with P values below 0.05). The expression of VEGF protein in control group and experimental groups was significantly different, the difference was statistically significant (F=93.34, P<0.05). The expression of VEGF protein first increased and then decreased with the concentration of cobalt chloride. The count reached a peak value of (901.000±6.798) pg/mL at 200 μmol/L. There were statistically significant differences in 200 μmol/L cobalt chloride group with those of other groups (t=27.70, 10.56, 4.65, 10.49, 17.97; with P values below 0.05). The expression of Ang-1 protein in control group and experimental groups was significantly different, the difference was statistically significant (F=279.3, P<0.05). The expression of Ang-1 protein first increased and then decreased with the concentration of cobalt chloride. The count reached a peak value of (4 364.0±117.3) ng/mL at 100 μmol/L. There were statistically significant differences between 100 μmol/L cobalt chloride group and control group, 50, 200, 300, 400 μmol/L cobalt chloride group(t=8.57, 4.33, 17.03, 19.48, 23.30, with P values below 0.05). The expression of Ang-1 mRNA in control group and experimental groups was significantly different, the difference was statistically significant (F=172.0, P<0.05). The expression of Ang-1 mRNA first increased and then decreased with the concentration of cobalt chloride. The count reached a peak value of 6.732×10-4±7.140×10-6 at 100 μmol/L. There were statistically significant differences between 100 μmol/L cobalt chloride group and control group, 200, 300, 400 μmol/L cobalt chloride group(t=10.05, 20.21, 110.20, 34.25; with P values below 0.05).

Conclusion

Under mild hypoxia environment, the expression of Ang-1 in pericytes was promoted with the increasing level of hypoxia, while under severe hypoxia environment, the expression of Ang-1 in pericytes was inhibited with the increasing level of hypoxia.

图1 蛋白质印迹法检测不同浓度氯化钴诱导缺氧对人脑血管周细胞HIF-1α蛋白表达。A示HIF-1α和β-tubulin蛋白表达;B示HIF-1α蛋白表达相对量;与200 μmol/L氯化钴组比较,aP<0.05;与对照组比较,bP<0.05;氯化钴浓度分别为0、50、100、200、300、400 μmol/L,分别对应为对照组,50、100、200、300、400 μmol/L氯化钴组;HIF-1α为缺氧诱导因子-1α
图2 不同浓度氯化钴诱导缺氧对血管周细胞HIF-1α mRNA表达的影响。与400 μmol/L氯化钴组比较,aP<0.05;与400 μmol/L氯化钴组比较,bt=1.538,bP>0.05;与对照组比较,cP<0.05;氯化钴浓度分别为0、50、100、200、300、400 μmol/L,分别对应为对照组,50、100、200、300、400 μmol/L氯化钴组;400 μmol/L氯化钴组标准差较小,接近0,故图中无法显示;HIF-1α为缺氧诱导因子-1α;GAPDH为甘油醛-3-磷酸脱氢酶
图3 不同浓度氯化钴诱导缺氧对血管周细胞VEGF蛋白分泌的影响。与200 μmol/L氯化钴组比较,aP<0.05;与对照组比较,bP<0.05;氯化钴浓度分别为0、50、100、200、300、400 μmol/L,分别对应为对照组,50、10、200、300、400 μmol/L氯化钴组;VEGF为血管内皮生长因子
图4 不同浓度氯化钴诱导缺氧对血管周细胞Ang-1蛋白和mRNA表达的影响。A示Ang-1蛋白表达;B示Ang-1 mRNA表达;与100 μmol/L氯化钴组比较,aP<0.05;与对照组比较,bP<0.05;与100 μmol/L氯化钴组比较,cP>0.05;Ang-1为血管生成素-1;GAPDH为甘油醛-3-磷酸脱氢酶
[1]
马雪,张晓馨,史清海,等. 氯化钴诱导大鼠原代脑微血管内皮细胞缺氧损伤的实验研究[J]. 新疆医科大学学报,2017, 40(8):1051-1055, 1060.
[2]
Yuan Y, Hilliard G, Ferguson T, et al. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha[J]. J Biol Chem, 2003, 278(18):15911-15916.
[3]
Xu Y, Lu X, Hu Y, et al. Melatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1alpha-VEGF pathway in oxygen-induced retinopathy mice[J]. J Pineal Res, 2018, 64(4):e12473.
[4]
Padel T, Roth M, Gaceb A, et al. Brain pericyte activation occurs early in Huntington′s disease[J]. Exp Neurol, 2018, 305:139-150.
[5]
Yan M, Hu Y, Yao M, et al. GM-CSF ameliorates microvascular barrier integrity via pericyte-derived Ang-1 in wound healing[J]. Wound Repair Regen, 2017, 25(6):933-943.
[6]
Chen Z, Xu XH, Hu J. Role of pericytes in angiogenesis: focus on cancer angiogenesis and anti-angiogenic therapy[J]. Neoplasma, 2016, 63(2):173-182.
[7]
Nowicki M, Wierzbowska A, Malachowski R, et al. VEGF, ANGPT1, ANGPT2, and MMP-9 expression in the autologous hematopoietic stem cell transplantation and its impact on the time to engraftment[J]. Ann Hematol, 2017, 96(12):2103-2112.
[8]
Parikh SM. Angiopoietins and Tie2 in vascular inflammation[J]. Curr Opin Hematol, 2017, 24(5):432-438.
[9]
Potente M, Mäkinen T. Vascular heterogeneity and specialization in development and disease[J]. Nat Rev Mol Cell Biol, 2017, 18(8):477-494.
[10]
齐康. 通心络保护内皮屏障减轻糖尿病心肌再灌注损伤的作用及机制研究[D]. 北京:北京协和医学院,2015.
[11]
Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis[J]. Physiol Rev, 2004, 84(3):869-901.
[12]
Lee E, Takahashi H, Pauty J, et al. A 3D in vitro pericyte-supported microvessel model: visualisation and quantitative characterisation of multistep angiogenesis[J]. J Mater Chem B, 2018, 6(7):1085-1094.
[13]
Harrell CR, Simovic Markovic B, Fellabaum C, et al. Molecular mechanisms underlying therapeutic potential of pericytes[J]. J Biomed Sci, 2018, 25(1):21.
[14]
Yan HT, Su GF. Expression and significance of HIF-1α and VEGF in rats with diabetic retinopathy[J]. Asian Pac J Trop Med, 2014, 7(3):237-240.
[15]
张季,李杨,李析胤,等. HIF-1α、TP、VEGF在乳腺癌组织中的表达及其与癌组织生长、浸润及转移的关系[J]. 西北国防医学杂志,2018, 39(3):188-192.
[16]
Chen JX, Stinnett A. Ang-1 gene therapy inhibits hypoxia-inducible factor-1 alpha (HIF-1 alpha)-prolyl-4-hydroxylase-2, stabilizes HIF-1alpha expression, and normalizes immature vasculature in db/db mice[J]. Diabetes, 2008, 57(12):3335-3343.
[17]
Heinolainen K, Karaman S, D′Amico G, et al. VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling[J]. Circ Res, 2017, 120(9):1414-1425.
[18]
Eilken HM, Dieguez-Hurtado R, Schmidt I, et al. Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1[J]. Nat Commun, 2017, 8(1):1574.
[19]
Dulmovits BM, Herman IM. Microvascular remodeling and wound healing: a role for pericytes[J]. Int J Biochem Cell Biol, 2012, 44(11):1800-1812.
[20]
李伟,Shim WN, Sim EK. 血管生成素-1对猪慢性缺血心肌中功能性新生血管增生的促进作用[J]. 复旦学报(医学版), 2018, 45(3):347-353.
[1] 朱韵莹, 高晓琳, 戈艳萍, 王张嵩, 林钊宇, 李劲松, 武东辉. 缺氧相关的长链非编码RNA LINC00970在唾液腺腺样囊性癌中的表达及其作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 210-217.
[2] 张秀杨, 张龙飞, 陈世远, 高涌. 缺氧诱导因子1α介导单羧酸转运蛋白1表达参与短链脂肪酸对肠道缺氧保护作用的研究[J]. 中华普通外科学文献(电子版), 2023, 17(01): 18-23.
[3] 江振剑, 蒋明, 黄大莉. 基于决策曲线分析血清E-cad、HIF-1α预测乳腺癌改良根治术治疗预后的临床研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 272-275.
[4] 陈玉婷, 周影, 陆雅斐, 江滨. 缺氧预处理间充质干细胞的功能及机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 115-120.
[5] 田鹏飞, 王丽娟, 肖圣超. 黄芪总黄酮通过调控miR-190a-5p对缺氧/复氧诱导的心肌细胞损伤的影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 346-352.
[6] 王星月, 舒亮辉, 朝亚. 罗沙司他在炎症反应中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(02): 101-104.
[7] 冷玥祺, 廖衍沣, 武歆纯, 李美瑶, 石逸雯, 王晋豪, 杨嘉瑞, 李学民. 环境因素对眼部生理与病理影响的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 109-113.
[8] 王志文, 王长峰, 王海江. 肉桂醛经HIF-1α抑制肿瘤的研究进展及展望[J]. 中华神经创伤外科电子杂志, 2022, 08(04): 247-251.
[9] 肖海燕, 段业英, 吴玥琳, 伍丽婵, 唐灏珂. 神经学音乐治疗心搏骤停后缺血缺氧性脑病产妇一例[J]. 中华重症医学电子杂志, 2023, 09(02): 217-224.
[10] 梁玉兰, 陈亮, 曾令梅. NLR、RDW水平联合振幅整合脑电图在缺氧缺血性脑病患儿的预后研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 84-89.
[11] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[12] 盛超, 方海明, 刘璐璐, 韦瑞玲. 缺氧诱导因子HIF-1α与自噬相关因子Beclin-1和P62在结直肠腺瘤与腺癌癌变中的表达[J]. 中华临床医师杂志(电子版), 2022, 16(04): 337-342.
[13] 颜凡辉, 赵明俐, 李颖, 郭方明, 詹景冬, 赵英杰, 王阳, 张艳芬, 赵笑梅. 急性冠脉综合征患者冠脉血管病变程度与血清TNF-α、VEGF水平相关性研究[J]. 中华诊断学电子杂志, 2023, 11(03): 158-164.
[14] 肖莹莹, 田茵琦, 彭雪梅. 减重手术胃肠道血流量下降的原因及干预措施[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 179-185.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要