切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2019, Vol. 14 ›› Issue (02) : 118 -123. doi: 10.3877/cma.j.issn.1673-9450.2019.02.008

所属专题: 文献

论著

Nrf2/HO-1在远隔缺血后处理减轻大鼠心肺复苏脑损伤中的作用
李娟1, 白卫平2, 刘永飞1, 韩瑞丽1, 孙绪德1, 高昌俊1,()   
  1. 1. 710038 西安,空军军医大学唐都医院麻醉科
    2. 714000 渭南市骨科医院麻醉科
  • 收稿日期:2019-01-15 出版日期:2019-04-01
  • 通信作者: 高昌俊
  • 基金资助:
    国家自然科学基金(81571183)

Effect of Nrf2 / HO-1 in remote ischemic post-conditioning alleviating rat brain injury induced by cardiopulmonary resuscitation

Juan Li1, Weiping Bai2, Yongfei Liu1, Ruili Han1, Xude Sun1, Changjun Gao1,()   

  1. 1. Department of Anesthesiology, Tangdu Hospital, Air Force Military Medical University, Xi’an 710038, China
    2. Department of Anesthesiology, Weinan Orthopaedic Hospital, Weinan 714000, China
  • Received:2019-01-15 Published:2019-04-01
  • Corresponding author: Changjun Gao
  • About author:
    Corresponding auther: Gao Changjun, Email:
引用本文:

李娟, 白卫平, 刘永飞, 韩瑞丽, 孙绪德, 高昌俊. Nrf2/HO-1在远隔缺血后处理减轻大鼠心肺复苏脑损伤中的作用[J]. 中华损伤与修复杂志(电子版), 2019, 14(02): 118-123.

Juan Li, Weiping Bai, Yongfei Liu, Ruili Han, Xude Sun, Changjun Gao. Effect of Nrf2 / HO-1 in remote ischemic post-conditioning alleviating rat brain injury induced by cardiopulmonary resuscitation[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(02): 118-123.

目的

探讨核因子E2相关因子2(Nrf2)/血红素氧化酶-1 (HO-1)在远隔缺血后处理减轻大鼠心肺复苏脑损伤过程中的表达变化及意义。

方法

采用随机数字表法将45只成年雄性SD大鼠分为3组:假手术组(Sham组)、模型组(Control组)、远隔缺血后处理组(RIPost组),每组15只。Control组大鼠建立窒息性心肺复苏脑损伤模型,RIPost组大鼠在自主循环恢复后行肢体远隔缺血后处理。在自主循环恢复后24 h分别采用苏木精-伊红染色、酶联免疫吸附试验检测血清神经元特异性烯醇化酶(NSE),观察脑组织的损伤情况;Western Blotting、免疫组织化学染色、实时荧光定量PCR检测脑组织Nrf2、HO-1蛋白及其mRNA表达情况。

结果

与Sham组相比,Control组呈急性缺血性改变,海马区神经元有明显的损伤,血清NSE含量显著升高,差异有统计学意义(P<0.05),而RIPost组病理学改变轻于Control组,血清NSE含量也较Control组明显降低,差异有统计学意义(P<0.05);Control组、RIPost组的Nrf2核蛋白和HO-1蛋白表达均高于Sham组,且RIPost组HO-1蛋白表达显著高于Control组,差异均有统计学意义(P值均小于0.05)。实时荧光定量PCR显示Control组及RIPost组Nrf2 mRNA表达水平差异无统计学意义(P>0.05);RIPost组HO-1 mRNA的表达较Control组升高更显著,差异有统计学意义(P<0.05)。

结论

远隔缺血后处理可减轻大鼠心肺复苏脑损伤,其作用机制可能与上调大鼠Nrf2 /HO-1通路有关。

Objective

To investigate the expression alternation and the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in rats with remote ischemic post-conditioning alleviating brain injury induced by cardiopulmonary resuscitation.

Methods

According to the random number table method, a total of 45 adult male SD rats were divided in to Sham-operation group (Sham group), asphyxial cardiac arrest resuscitation group (Control group) and remote ischemic post-conditioning group (RIPost group), with 15 cases in each group. The rats in Control group were induced by 8-min asphyxiation and resuscitated with a standardized method, The remote ischemic post-conditioning models were established in RIPost group on the basis of the Control group. At the 24th hour after return of spontaneous circulation, pathomorphological changes in brain tissues were detected by hematoxylin-eosin staining, and the contents of neuron specific enolase(NSE) in serum were assessed by enzyme linked immunosorbent assay, the protein and mRNA expression of Nrf2, HO-1 in brain tissues were detected by Western blotting, immunohistochemistry and real-time(RT) PCR.

Results

Compared with Sham group, acute ischemic changes were found in Control group, which hippocampal neurons were obviously damaged, and NSE concentration in serum was increased significantly (P<0.05); while the pathological changes and serum NSE concentration in RIPost group were milder than those in Control group (P<0.05); the protein expressions of nuclear Nrf2 and HO-1 in Control group and RIPost group were higher than those in Sham group, and the expressions in RIPost group were higher than those in Control group (with P values below 0.05). In addition, RT-PCR analysis showed that there were no significant differences in Nrf2 mRNA levels in Control group and RIPost group (P>0.05), but HO-1 mRNA expression in RIPost group was significantly higher than that in Control group(P<0.05).

Conclusion

Remote ischemia post-conditioning can relieve brain injury induced by cardiopulmonary resuscitation, and the neuroprotective mechanism of RIPost may be related with the Nrf2/HO-1 signaling pathway.

图1 各组大鼠海马CA1区神经元形态(苏木精-伊红染色,×400)。A示Sham组脑细胞胞膜完整,核仁清晰,苏木精染色均匀,无明显病理学改变;B示Control组脑细胞呈急性缺血性改变,细胞核固缩或溶解,细胞浆出现"嗜伊红"染色或正常细胞结构消失甚至出现空泡;C示RIPost组脑组织病理学改变较Control组明显减轻;Sham组:假手术组;Control组:模型组;RIPost组:远隔缺血后处理组
表1 各组大鼠自主循环恢复后24 h海马神经元存活率、血清NSE含量和Nrf2 mRNA、HO-1蛋白及mRNA的相对表达量比较(n=5, ±s)
图2 各组大鼠损伤脑组织中Nrf2蛋白的表达
图3 各组大鼠损伤脑组织中Nrf2表达(免疫组织化学染色,×400)。A示Sham组脑组织Nrf2表达(±);B示Control组脑组织Nrf2表达较Sham组增强(+);C示RIPost组较Control组Nrf2表达增加更明显,且多位于细胞核中(++);Nrf2为核因子E2相关因子2;Sham组:假手术组,Control组:模型组,RIPost组:远隔缺血后处理组
图4 Western Blotting检测各组大鼠损伤脑组织中HO-1蛋白的表达。HO-1为血红素氧合酶-1;Sham组:假手术组,Control组:模型组,RIPost组:远隔缺血后处理组
[1]
王宁,李晓欧,巴晓红. 远隔缺血后处理对脑缺血模型大鼠再灌注损伤炎性反应相关信号的影响[J]. 中国组织工程研究,2015, 19(49): 7902-7907.
[2]
吴卫娟,孟然. 远隔缺血后处理脑保护的研究进展[J]. 中华老年心脑血管病杂志,2016, 18(9): 1003-1005.
[3]
Drunalini Perera PN, Hu Q, Tang J, et al. Delayed remote ischemic postconditioning improves long term sensory motor deficits in a neonatal hypoxic ischemic rat model[J]. PLoS One, 2014, 9(2): e90258.
[4]
安祥,阳昀,刘开祥,等. 肢体缺血后处理通过Nrf2/ARE通路对大鼠脑缺血再灌注损伤的影响[J]. 广西医学,2017, 39(7): 1029-1031, 1034.
[5]
司金春,许志杰,陈卫东,等. 不同时间心肺复苏脑组织损伤变化规律[J]. 中国临床研究,2016, 29(5): 586-589.
[6]
Gao CJ, Niu L, Ren PC, et al. Hypoxic preconditioning attenuates global cerebral ischemic injury following asphyxial cardiac arrest through regulation of delta opioid receptor system[J]. Neuroscience, 2012, 202: 352-362.
[7]
Pall ML, Levine S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors[J]. Sheng Li Xue Bao, 2015, 67(1): 1-18.
[8]
钟苑芳,贺凌飞,余日安. 转录因子NF-E2相关因子2-抗氧化转录元件信号通路组成与激活机制[J]. 中国职业医学,2010, 37(5): 416-419.
[9]
赵春阳,王晓良,彭英. Nrf2在神经退行性疾病中的作用及激活剂的研究进展[J]. 药学学报,2015, 50(4): 375-384.
[10]
宫丽荣,余剑波,张圆. Nrf2/HO-1通路与针刺对肺损伤保护作用研究进展[J]. 中国中西医结合外科杂志,2015, 21(5): 525-528.
[11]
高梦颖,何永昌,孙国柱,等. 大鼠液压冲击脑损伤Nrf2、HO-1和NQO-1动态表达变化及意义[J]. 第三军医大学学报,2016, 38(18): 2023-2028.
[12]
Egea J, Rosa AO, Lorrio S, et al. Haeme oxygenase-1 overexpression via nAChRs and the transcription factor Nrf2 has antinociceptive effects in the formalin test[J]. Pain, 2009, 146(1/2): 75-83.
[13]
Yang C, Zhang X, Fan H, et al. Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia[J]. Brain Res, 2009, 1282: 133-141.
[14]
郭瑜. 远隔缺血后处理对大鼠窒息性心搏骤停脑损伤的作用研究[D]. 西安:第四军医大学,2015.
[15]
韩瑞丽,高龙飞,姜静,等. 迷走神经在缺血后处理减轻大鼠复苏后脑损伤中的作用探究[J]. 现代生物医学进展,2017, 17(14): 2631-2634, 2670.
[16]
韩瑞丽. 胆碱能抗炎通路参与远隔缺血后处理减轻心肺复苏后脑损伤的研究[D]. 西安:第四军医大学,2017.
[17]
Navarro E, Buendia I, Parada E, et al. Alpha7 nicotinic receptor activation protects against oxidative stress via heme-oxygenase I induction[J]. Biochem Pharmacol, 2015, 97(4): 473-481.
[18]
Parada E, Egea J, Buendia I, et al. The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2[J]. Antioxid Redox Signal, 2013, 19(11): 1135-1148.
[19]
Egea J, Buendia I, Parada E, et al. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection[J]. Biochem Pharmacol, 2015, 97(4): 463-472.
[20]
Han Z, Li L, Wang L, et al. Alpha-7 nicotinic acetylcholine receptor agonist treatment reduces neuroinflammation, oxidative stress, and brain injury in mice with ischemic stroke and bone fracture[J]. J Neurochem, 2014, 131(4): 498-508.
[21]
Norman GJ, Morris JS, Karelina K, et al. Cardiopulmonary arrest and resuscitation disrupts cholinergic anti-inflammatory processes: a role for cholinergic alpha7 nicotinic receptors[J]. J Neurosci, 2011, 31(9): 3446-3452.
[22]
Dash PK, Zhao J, Kobori N, et al. Activation of Alpha 7 Cholinergic Nicotinic Receptors Reduce Blood-Brain Barrier Permeability following Experimental Traumatic Brain Injury[J]. J Neurosci, 2016, 36(9): 2809-2818.
[23]
Duris K, Manaenko A, Suzuki H, et al. α7 nicotinic acetylcholine receptor agonist PNU-282987 attenuates early brain injury in a perforation model of subarachnoid hemorrhage in rats[J]. Stroke, 2011, 42(12): 3530-3536.
[1] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[2] 李文琳, 羊玲, 邢凯慧, 陈彩华, 钟丽花, 张娅琴, 张薇. 脐动脉血血气分析联合振幅整合脑电图对新生儿窒息脑损伤的早期诊断价值分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 550-558.
[3] 钱晓英, 吴新, 徐婷婷. 颅脑损伤并发呼吸衰竭患者早期机械通气的效果分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 526-528.
[4] 刘玲, 肖颖, 王蓉. 严重创伤并发肺部感染死亡病例分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 581-583.
[5] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[6] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[7] 李飞翔, 段虎斌, 李晋虎, 吴昊, 王永红, 范益民. 急性颅脑损伤继发下肢静脉血栓的相关危险因素分析及预测模型构建[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 277-282.
[8] 潘立, 谢理政, 程宏伟, 茆翔. 创伤性颅脑损伤后垂体功能减退[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 308-312.
[9] 王景景, 符锋, 李建伟, 任党利, 陈翀, 刘慧, 孙洪涛, 涂悦. 针刺对中型创伤性颅脑损伤后BDNF/TrkB信号通路的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 199-205.
[10] 张馨月, 韩帅, 张舒石, 李文臣, 张舒岩. 颅内压监测技术在创伤性颅脑损伤治疗中的应用[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 246-252.
[11] 王守森, 黄银兴, 陈宇晖, 胡晓芳, 刘海兵. 重型颅脑损伤的外科救治策略[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 190-192.
[12] 张永明. 颈段脊髓电刺激治疗颅脑损伤后慢性意识障碍的进展[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 129-134.
[13] 王召, 田进杰, 郭朝, 王蕾, 严红燕, 冯素娟, 张毅. 血浆PGK1早期检测对创伤性颅脑损伤患者病情严重程度及预后的预测价值[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 154-159.
[14] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[15] 丁晶, 李培雯, 许迎春. 醒脑开窍针刺法在神经急重症中的应用[J]. 中华针灸电子杂志, 2023, 12(04): 161-164.
阅读次数
全文


摘要