切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (01) : 72 -75. doi: 10.3877/cma.j.issn.1673-9450.2022.01.013

综述

软骨干/祖细胞修复软骨损伤的研究进展
曹瑞祺1, 尹合勇1, 于浩淼1, 马立峰1, 郭艾1,()   
  1. 1. 100050 首都医科大学附属北京友谊医院骨科
  • 收稿日期:2021-12-11 出版日期:2022-02-01
  • 通信作者: 郭艾
  • 基金资助:
    国家自然科学基金(82002285); 北京市自然科学基金(7192045)

Research progress of cartilage stem/progenitor cell in joint cartilage repair

Ruiqi Cao1, Heyong Yin1, Haomiao Yu1, Lifeng Ma1, Ai Guo1,()   

  1. 1. Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
  • Received:2021-12-11 Published:2022-02-01
  • Corresponding author: Ai Guo
引用本文:

曹瑞祺, 尹合勇, 于浩淼, 马立峰, 郭艾. 软骨干/祖细胞修复软骨损伤的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(01): 72-75.

Ruiqi Cao, Heyong Yin, Haomiao Yu, Lifeng Ma, Ai Guo. Research progress of cartilage stem/progenitor cell in joint cartilage repair[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(01): 72-75.

关节软骨损伤是临床常见的运动损伤,然而关节软骨缺乏血管、神经支配,损伤后难以自身完全再生修复,缺乏有效的治疗会导致骨关节炎(OA)的发生。随着组织工程学的发展,近期研究发现,软骨组织中存在具有多向分化潜能的软骨干/祖细胞(CSPC),可以分化成高度同质化的软骨细胞。这种细胞在软骨损伤后自发迁移并参与软骨损伤组织修复和再生,有望成为治疗软骨损伤的新方法。本文对CSPC的分布、特征及其在软骨损伤和OA中的作用和应用进行综述,旨在为CSPC的研究应用及软骨损伤的治疗提供理论基础,为临床上治疗软骨损伤开拓新方向。

Articular cartilage injury represents is a most common athletic injury in the clinic. However, articular cartilage lacks of blood vessels and innervation, it is difficult to completely regenerate and repair itself after injury. Without effective medical intervention, it usually develops into osteoarthritis (OA). With the rapid development of tissue engineering, cartilage stem/progenitor cell (CSPC) has been found to be presented in cartilage tissue and showes great potential to develop into highly homogenous chondrocytes recently. Moreover, CSPC tends to migrate into cartilage damage site and involves in cartilage tissue repair and regeneration. These findings suggest that CSPC is one of the most promising seed cells for articular cartilage injury treatments. This article reviewes the sources, characteristics and the role and application in cartilage injury and OA of CSPC, with the purpose to propose the new insights on cartilage repair, and to exploit a novel direction in the solution to conundrums to cartilage injury.

[1]
Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study[J]. Ann Rheum Dis, 2014, 73(7): 1323-1330.
[2]
Liu Q, Wang S, Lin J, et al. The burden for knee osteoarthritis among Chinese elderly: estimates from a nationally representative study[J]. Osteoarthritis Cartilage, 2018, 26(12): 1636-1642.
[3]
Shafiee A, Kabiri M, Langroudi L, et al. Evaluation and comparison of the in vitro characteristics and chondrogenic capacity of four adult stem/progenitor cells for cartilage cell-based repair[J]. J Biomed Mater Res A, 2016, 104(3): 600-610.
[4]
Steadman JR, Rodkey WG, Briggs KK. Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes[J]. J Knee Surg, 2002, 15(3): 170-176.
[5]
Barbero A, Ploegert S, Heberer M, et al. Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes[J]. Arthritis Rheum, 2003, 48(5): 1315-1325.
[6]
Alsalameh S, Amin R, Gemba T, et al. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage[J]. Arthritis Rheum, 2004, 50(5): 1522-1532.
[7]
Hattori S, Oxford C, Reddi AH. Identification of superficial zone articular chondrocyte stem/progenitor cells[J]. Biochem Biophys Res Commun, 2007, 358(1): 99-103.
[8]
Ma C, Lu T, Wen H, et al. Isolation and biological characteristic evaluation of a novel type of cartilage stem/progenitor cell derived from Small tailed Han sheep embryos[J]. Int J Mol Med, 2018, 42(1): 525-533.
[9]
Yu Y, Zheng H, Buckwalter JA, et al. Single cell sorting identifies progenitor cell population from full thickness bovine articular cartilage[J]. Osteoarthritis Cartilage, 2014, 22(9): 1318-1326.
[10]
Koelling S, Kruegel J, Irmer M, et al. Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis[J]. Cell Stem Cell, 2009, 4(4): 324-335.
[11]
Martin JM, Smith M, Al-Rubeai M. Cryopreservation and in vitro expansion of chondroprogenitor cells isolated from the superficial zone of articular cartilage[J]. Biotechnol Prog, 2005, 21(1): 168-177.
[12]
Matsushita Y, Ono W, Ono N. Growth plate skeletal stem cells and their transition from cartilage to bone[J]. Bone, 2020, 136: 115359.
[13]
Fickert S, Fiedler J, Brenner RE. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers[J]. Arthritis Res Ther, 2004, 6(5): R422-432.
[14]
Jiang Y, Cai Y, Zhang W, et al. Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration[J]. Stem Cells Transl Med, 2016, 5(6): 733-744.
[15]
Grogan SP, Miyaki S, Asahara H, et al. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis[J]. Arthritis Res Ther, 2009, 11(3): R85.
[16]
Williams R, Khan IM, Richardson K, et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage[J]. PLoS One, 2010, 5(10): e13246.
[17]
Ozbey O, Sahin Z, Acar N, et al. Characterization of colony-forming cells in adult human articular cartilage[J]. Acta Histochem, 2014, 116(5): 763-770.
[18]
Pretzel D, Linss S, Rochler S, et al. Relative percentage and zonal distribution of mesenchymal progenitor cells in human osteoarthritic and normal cartilage[J]. Arthritis Res Ther, 2011, 13(2): R64.
[19]
Su X, Zuo W, Wu Z, et al. CD146 as a new marker for an increased chondroprogenitor cell sub-population in the later stages of osteoarthritis[J]. J Orthop Res, 2015, 33(1): 84-91.
[20]
Seol D, Yu Y, Choe H, et al. Effect of short-term enzymatic treatment on cell migration and cartilage regeneration: in vitro organ culture of bovine articular cartilage[J]. Tissue Eng Part A, 2014, 20(13/14): 1807-1814.
[21]
Jang KW, Ding L, Seol D, et al. Low-intensity pulsed ultrasound promotes chondrogenic progenitor cell migration via focal adhesion kinase pathway[J]. Ultrasound Med Biol, 2014, 40(6): 1177-1786.
[22]
Wang YX, Zhao ZD, Wang Q, et al. Biological potential alterations of migratory chondrogenic progenitor cells during knee osteoarthritic progression[J]. Arthritis Res Ther, 2020, 22(1): 62.
[23]
Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration[J]. Nat Rev Mol Cell Biol, 2014, 15(1): 19-33.
[24]
Clevers H. STEM CELLS. What is an adult stem cell?[J]. Science, 2015, 350(6266): 1319-1320.
[25]
Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering[J]. Arthritis Res Ther, 2003, 5(1): 32-45.
[26]
Zhuge Y, Liu ZJ, Velazquez OC. Adult stem cel diferentiation and trafficking and their implications in disease[J]. Adv Exp Med Biol, 2010, 695: 169-183.
[27]
Brack AS, Rando TA. Tissue-specific stem cells: lessons from the skeletal muscle satellite cell[J]. Cell Stem Cell, 2012, 10(5): 504-514.
[28]
Brack AS, Rando TA. Tissue-specific stem cells: lessons from the skeletal muscle satellite cell[J]. J Stem Cell, 2012, 10(5): 504-514.
[29]
Seol D, Mccabe DJ, Choe H, et al. Chondrogenic progenitor cells respond to cartilage injury[J]. Arthritis Rheum, 2012, 64(11): 3626-3637.
[30]
Waller KA, Zhang LX, Elsaid KA, et al. Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis[J]. Proc Natl Acad Sci U S A, 2013, 110(15): 5852-5857.
[31]
Lotz MK, Otsuki S, Grogan SP, et al. Cartilage cell clusters[J]. Arthritis Rheum, 2010, 62(8): 2206-2218.
[32]
Bastiaansen-Jenniskens YM, Wei W, Feijt C, et al. Stimulation of fibrotic processes by the infrapatellar fat pad in cultured synoviocytes from patients with osteoarthritis: a possible role for prostaglandin f2α[J]. Arthritis Rheum, 2013, 65(8): 2070-2080.
[33]
Wang K, Li J, Li Z, et al. Chondrogenic progenitor cells exhibit superiority over mesenchymal stem cells and chondrocytes in platelet-rich plasma scaffold-based cartilage regeneration[J]. Am J Sports Med, 2019, 47(9): 2200-2215.
[34]
Pap T, Korb-Pap A. Cartilage damage in osteoarthritis and rheumatoid arthritis--two unequal siblings[J]. Nat Rev Rheumatol, 2015, 11(10): 606-615.
[35]
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis[J]. Lancet, 2019, 393(10182): 1745-1759.
[36]
Huang YZ, Xie HQ, Silini A, et al. Mesenchymal stem/progenitor scells derived from articular cartilage, synovial membrane and synovial fluid for cartilage regeneration: current status and future perspectives[J]. Stem Cell Rev Rep, 2017, 13(5): 575-586.
[37]
Chen B, Qin J, Wang H, et al. Effects of adenovirus-mediated bFGF, IL-1Ra and IGF-1 gene transfer on human osteoarthritic chondrocytes and osteoarthritis in rabbits[J]. Exp Mol Med, 2010, 42(10): 684-695.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[3] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[4] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[5] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[6] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[7] 赵之栋, 李众利. 骨关节炎早期诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 689-693.
[8] 刘伦, 王云鹭, 李锡勇, 韩鹏飞, 张鹏, 李晓东. 机器人辅助膝关节单髁置换术的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 715-721.
[9] 胡银华, 薛龙. 中国中老年人症状性膝骨关节炎的发病率及危险因素[J]. 中华关节外科杂志(电子版), 2023, 17(04): 470-478.
[10] 利洪艺, 杨浪, 温国洪, 关鸿, 茹江英, 王湘江. 全膝股骨假体矢状面位置与术后膝前痛及功能的关系[J]. 中华关节外科杂志(电子版), 2023, 17(04): 479-484.
[11] 闫兆龙, 张镇斌, 李广兴, 赵璋, 张业勇, 殷鲁旭, 李树锋. 胫骨高位截骨术治疗膝骨关节炎的早期效果及影响因素[J]. 中华关节外科杂志(电子版), 2023, 17(04): 492-499.
[12] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[13] 王旭, 师绍敏, 毛燕, 季上, 刘亚玲. 肝酶代谢与骨关节炎相关性的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 379-384.
[14] 周晓强, 孙超, 虞宵, 金宇杰, 李志强, 张向鑫, 陈广祥. 同一患者同期行全膝和单髁置换术的早期临床疗效[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 275-281.
[15] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
阅读次数
全文


摘要