[1] |
GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222.
|
[2] |
Lionelli GT, Pickus EJ, Beckum OK, et al. A three decade analysis of factors affecting burn mortality in the elderly[J]. Burns, 2005, 31(8): 958-963.
|
[3] |
Lachiewicz AM, Hauck CG, Weber DJ, et al. Bacterial Infections After Burn Injuries: Impact of Multidrug Resistance[J]. Clin Infect Dis, 2017, 65(12): 2130-2136.
|
[4] |
Barrow RE, Spies M, Barrow LN, et al. Influence of demographics and inhalation injury on burn mortality in children[J]. Burns, 2004, 30(1): 72-77.
|
[5] |
Schwacha MG, Holland LT, Chaudry IH, et al. Genetic variability in the immune-inflammatory response after major burn injury[J]. Shock, 2005, 23(2): 123-128.
|
[6] |
Church D, Elsayed S, Reid O, et al. Burn wound infections[J]. Clin Microbiol Rev, 2006, 19(2): 403-434.
|
[7] |
Yao RQ, Ren C, Wang JN, et al. Publication Trends of Research on Sepsis and Host Immune Response during 1999-2019: A 20-year Bibliometric Analysis[J]. Int J Biol Sci, 2020, 16(1): 27-37.
|
[8] |
Browder W, Williams D. Immunosuppression in the surgical patient[J]. J Natl Med Assoc, 1988, 80(5): 531-536.
|
[9] |
房贺,徐龙,朱峰. 持续炎症-免疫抑制-分解代谢综合征在危重烧伤中的研究进展[J]. 中华烧伤杂志,2019, 35(7): 548-551.
|
[10] |
Fullerton JN, O′Brien AJ, Gilroy DW. Lipid mediators in immune dysfunction after severe inflammation[J]. Trends Immunol, 2014, 35(1):12-21.
|
[11] |
Seeley JJ, Ghosh S. Molecular mechanisms of innate memory and tolerance to LPS[J]. J Leukoc Biol, 2017, 101(1): 107-119.
|
[12] |
Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance[J]. Trends Immunol, 2009, 30(10): 475-487.
|
[13] |
Torgersen C, Moser P, Luckner G et al. Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis[J]. Anesth Analg, 2009, 108(6): 1841-1847.
|
[14] |
Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression[J]. Nat Rev Nephrol, 2018, 14(2): 121-137.
|
[15] |
Shekarian T, Valsesia-Wittmann S, et al. Pattern recognition receptors: immune targets to enhance cancer immunotherapy[J]. Ann Oncol, 2017, 28(8): 1756-1766.
|
[16] |
Porter C, Tompkins RG, Finnerty CC, et al. The metabolic stress response to burn trauma: current understanding and therapies[J]. Lancet, 2016, 388(10052): 1417-1426.
|
[17] |
Boldeanu L, Boldeanu MV, Bogdan M, et al. Immunological approaches and therapy in burns (Review)[J]. Exp Ther Med, 2020, 20(3): 2361-2367.
|
[18] |
Poudrier J, Chagnon-Choquet J, Roger M. Influence of dendritic cells on B-cell responses during HIV infection[J]. Clin Dev Immunol, 2012, 2012: 592187.
|
[19] |
Wang P, Zhang Z, Yin B, et al. Identifying changes in immune cells and constructing prognostic models using immune-related genes in post-burn immunosuppression[J]. PeerJ, 2022, 10: e12680.
|
[20] |
Zhang Z, He Y, Lin R, et al. Identification of Important Modules and Biomarkers That Are Related to Immune Infiltration Cells in Severe Burns Based on Weighted Gene Co-Expression Network Analysis[J]. Front Genet, 2022, 13: 908510.
|
[21] |
Hotchkiss RS, Moldawer LL. Parallels between cancer and infectious disease[J]. N Engl J Med, 2014, 371(4): 380-383.
|
[22] |
Laggner M, Lingitz MT, Copic D, et al. Severity of thermal burn injury is associated with systemic neutrophil activation[J]. Sci Rep, 2022, 12(1): 1654.
|
[23] |
Devine RA, Diltz Z, Hall MW, et al. The systemic immune response to pediatric thermal injury[J]. Int J Burns Trauma, 2018, 8(1): 6-16.
|
[24] |
Martin P, Leibovich SJ. Inflammatory cells during wound repair: the good, the bad and the ugly[J]. Trends Cell Biol, 2005, 15(11): 599-607.
|
[25] |
Hampson P, Dinsdale RJ, Wearn CM, et al. Neutrophil Dysfunction, Immature Granulocytes, and Cell-free DNA are Early Biomarkers of Sepsis in Burn-injured Patients: A Prospective Observational Cohort Study[J]. Ann Surg, 2017, 265(6): 1241-1249.
|
[26] |
Sakuma M, Khan MAS, Yasuhara S, et al. Mechanism of pulmonary immunosuppression: extrapulmonary burn injury suppresses bacterial endotoxin-induced pulmonary neutrophil recruitment and neutrophil extracellular trap (NET) formation[J]. FASEB J, 2019, 339(12): 13602-13616.
|
[27] |
Beckmann N, Schumacher F, Kleuser B, et al. Burn Injury Impairs Neutrophil Chemotaxis Through Increased Ceramide[J]. Shock, 2021, 56(1): 125-132.
|
[28] |
Brahmamdam P, Inoue S, Unsinger J, et al. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis[J]. J Leukoc Biol, 2010, 88(2): 233-240.
|
[29] |
Leliefeld PH, Wessels CM, Leenen LP, et al. The role of neutrophils in immune dysfunction during severe inflammation[J]. Crit Care, 2016, 20: 73.
|
[30] |
Demaret J, Venet F, Friggeri A, et al. Marked alterations of neutrophil functions during sepsis-induced immunosuppression[J]. J Leukoc Biol, 2015, 98(6): 1081-1090.
|
[31] |
Lateef Z, Stuart G, Jones N, et al. The Cutaneous Inflammatory Response to Thermal Burn Injury in a Murine Model[J]. Int J Mol Sci, 2019, 20(3): 538.
|
[32] |
Blears E, Sommerhalder C, Toliver-Kinsky T, et al. Current problems in burn immunology[J]. Curr Probl Surg, 2020, 57(6): 100779.
|
[33] |
Santangelo S, Gamelli RL, Shankar R. Myeloid commitment shifts toward monocytopoiesis after thermal injury and sepsis[J]. Ann Surg, 2001, 233(1): 97-106.
|
[34] |
Serbina NV, Jia T, Hohl TM, et al. Monocyte-mediated defense against microbial pathogens[J]. Annu Rev Immunol, 2008, 26: 421-452.
|
[35] |
Wang GQ, Zhang Y, Wu HQ, et al. Reduction of CD47 on monocytes correlates with MODS in burn patients[J]. Burns, 2011, 37(1): 94-98.
|
[36] |
Guignant C, Lepape A, Huang X, et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients[J]. Critical Care, 2011, 15(2): R99.
|
[37] |
Kapellos TS, Bonaguro L, Gemünd I, et al. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases[J]. Front Immunol, 2019, 10: 2035.
|
[38] |
Xiu F, Jeschke MG. Perturbed mononuclear phagocyte system in severely burned and septic patients[J]. Shock, 2013, 40(2): 81-88.
|
[39] |
Pelus LM, Gentile PS. In vivo modulation of myelopoiesis by prostaglandin E2. Ⅲ. Induction of suppressor cells in marrow and spleen capable of mediating inhibition of CFU-GM proliferation[J]. Blood, 1988, 71: 1633-1640.
|
[40] |
Finnerty CC, Herndon DN, Chinkes DL, et al. Serum cytokine differences in severely burned children with and without sepsis[J]. Shock, 2007, 27(1): 4-9.
|
[41] |
Gamelli RL, He LK, Liu LH. Macrophage mediated suppression of granulocyte and macrophage growth after burn wound infection reversal by means of anti-PGE2[J]. J Burn Care Rehabil, 2000, 21(1 Pt 1): 64-69.
|
[42] |
Enomoto N, Takei Y, Yamashina S, et al. Burn injury sensitizes rat Kupffer cells via mechanisms dependent on gut-derived endotoxin[J]. J Gastroenterol, 2004, 39(12): 1175-1181.
|
[43] |
Roquilly A, Villadangos JA. The role of dendritic cell alterations in susceptibility to hospital-acquired infections during critical-illness related immunosuppression[J]. Mol Immunol, 2015, 68(2 Pt A): 120-123.
|
[44] |
Guisset O, Dilhuydy MS, Thiébaut R, et al. Decrease in circulating dendritic cells predicts fatal outcome in septic shock[J]. Intensive Care Med, 2007, 33(1): 148-152.
|
[45] |
Chatterjee S, Lardinois O, Bhattacharjee S, et al. Oxidative stress induces protein and DNA radical formation in follicular dendritic cells of the germinal center and modulates its cell death patterns in late sepsis[J]. Free Radic Biol Med, 2011, 50(8): 988-999.
|
[46] |
Peck-Palmer OM, Unsinger J, Chang KC, et al. Modulation of the Bcl-2 family blocks sepsis-induced depletion of dendritic cells and macrophages[J]. Shock, 2009, 31(4): 359-366.
|
[47] |
Pène F, Courtine E, Ouaaz F, et al. Toll-like receptors 2 and 4 contribute to sepsis-induced depletion of spleen dendritic cells[J]. Infect Immun, 2009, 77(12): 5651-5658.
|
[48] |
Meng Y, Zhao Z, Zhu W, et al. CD155 blockade improves survival in experimental sepsis by reversing dendritic cell dysfunction[J]. Biochem Biophys Res Commun, 2017, 490(2): 283-289.
|
[49] |
Cheent K, Khakoo SI. Natural killer cells and hepatitis C: action and reaction[J]. Gut, 2011, 60(2): 268-278.
|
[50] |
Borden EC, Sen GC, Uze G, et al. Interferons at age 50: past, current and future impact on biomedicine[J]. Nat Rev Drug Discov, 2007, 6(12): 975-990.
|
[51] |
Stetson DB, Medzhitov R. Type I interferons in host defense[J]. Immunity, 2006, 25(3): 373-381.
|
[52] |
Vidal SM, Khakoo SI, Biron CA. Natural killer cell responses during viral infections: flexibility and conditioning of innate immunity by experience[J]. Curr Opin Virol, 2011, 1(6): 497-512.
|
[53] |
Souza-Fonseca-Guimaraes F, Parlato M, Fitting C, et al. NK cell tolerance to TLR agonists mediated by regulatory T cells after polymicrobial sepsis[J]. J Immunol, 2012, 188(12): 5850-5858.
|
[54] |
Shindo Y, McDonough JS, Chang KC, et al. Anti-PD-L1 peptide improves survival in sepsis[J]. J Surg Res, 2017, 208: 33-39.
|
[55] |
Beckmann N, Huber F, Hanschen M, et al. Scald Injury-Induced T Cell Dysfunction Can Be Mitigated by Gr1(+) Cell Depletion and Blockage of CD47/CD172a Signaling[J]. Front Immunol, 2020, 11: 876.
|
[56] |
Purcell EM, Dolan SM, Kriynovich S, et al. Burn injury induces an early activation response by lymph node CD4+ T cells[J]. Shock, 2006, 25(2): 135-140.
|
[57] |
Hargreaves RG, Borthwick NJ, Gilardini Montani MS, et al. Induction of apoptosis following antigen presentation by T cells: anergy and apoptosis are two separate phenomena[J]. Transplant Proc, 1997, 29(1/2): 1102-1104.
|
[58] |
Mousset CM, Hobo W, Woestenenk R, et al. Comprehensive Phenotyping of T Cells Using Flow Cytometry[J]. Cytometry A, 2019, 95(6): 647-654.
|
[59] |
Saravia J, Chapman NM, Chi H. Helper T cell differentiation[J]. Cell Mol Immunol, 2019, 16(7): 634-643.
|
[60] |
Patenaude J, D′Elia M, Hamelin C, et al. Burn injury induces a change in T cell homeostasis affecting preferentially CD4+ T cells[J]. J Leukoc Biol, 2005, 77(2): 141-150.
|
[61] |
Ni Choileain N, MacConmara M, Zang Y, et al. Enhanced regulatory T cell activity is an element of the host response to injury[J]. J Immunol, 2006, 176(1): 225-236.
|
[62] |
Wang SX, Liu, QY, Li Y. Lentinan ameliorates burn sepsis by attenuating CD4(+) CD25(+) Tregs[J]. Burns, 2016, 42(7): 1513-1521.
|
[63] |
Neely CJ, Maile R, Wang MJ, et al. Th17 (IFNγ- IL17+) CD4+ T cells generated after burn injury may be a novel cellular mechanism for postburn immunosuppression[J]. J Trauma, 2011, 70(3): 681-690.
|
[64] |
Tesmer LA, Lundy SK, Sarkar S, et al. Th17 cells in human disease[J]. Immunol Rev, 2008, 223: 87-113.
|
[65] |
Li N, Wei W, Yin F, et al. The abnormal expression of CCR4 and CCR6 on Tregs in rheumatoid arthritis[J]. Int J Clin Exp Med, 2015, 8(9): 15043-15053.
|
[66] |
Huang LF, Yao YM, Dong N, et al. Association between regulatory T cell activity and sepsis and outcome of severely burned patients: a prospective, observational study[J]. Crit Care, 2010, 14(1): R3.
|
[67] |
Jeschke MG, Chinkes DL, Finnerty CC, et al. Pathophysiologic response to severe burn injury[J]. Ann Surg, 2008, 248(3): 387-401.
|
[68] |
Sikora JP, Chlebna-Sokó D, Andrzejewska E, et al. Clinical evaluation of proinflammatory cytokine inhibitors (sTNFR I, sTNFR II, IL-1 ra), anti-inflammatory cytokines (IL-10, IL-13) and activation of neutrophils after burn-induced inflammation[J]. Scand J Immunol, 2008, 68(2): 145-152.
|
[69] |
Fazal N, Shelip A, Alzahrani AJ. Burn-injury affects gut-associated lymphoid tissues derived CD4+ T cells[J]. Results Immunol, 2013, 3: 85-94.
|
[70] |
Venet F, Davin F, Guignant C, et al. Early assessment of leukocyte alterations at diagnosis of septic shock[J]. Shock, 2010, 34(4): 358-363.
|
[71] |
Rauch PJ, Chudnovskiy A, Robbins CS, et al. Innate response activator B cells protect against microbial sepsis[J]. Science, 2012, 335(6068): 597-601.
|
[72] |
Weber GF, Chousterman BG, He S, et al. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis[J]. Science, 2015, 347(6227): 1260-1265.
|
[73] |
Mauri C, Menon M. Human regulatory B cells in health and disease: therapeutic potential[J]. J Clin Invest, 2017, 127(3): 772-779.
|
[74] |
Giamarellos-Bourboulis EJ, Apostolidou E, Lada M, et al. Kinetics of circulating immunoglobulin M in sepsis: relationship with final outcome[J]. Crit Care, 2013, 17(5): R247.
|
[75] |
Monneret G, Venet F. Sepsis-induced immune alterations monitoring by flow cytometry as a promising tool for individualized therapy[J]. Cytometry B Clin Cytom, 2016, 90(4): 376-386.
|
[76] |
Venet F, Lukaszewicz AC, Payen D, et al. Monitoring the immune response in sepsis: a rational approach to administration of immunoadjuvant therapies[J]. Curr Opin Immunol, 2013, 25(4): 477-483.
|
[77] |
Galbraith N, Walker S, Carter J, et al. Past, Present, and Future of Augmentation of Monocyte Function in the Surgical Patient[J]. Surg Infect (Larchmt), 2016, 17(5): 563-569.
|
[78] |
Kourou K, Exarchos TP, Exarchos KP, et al. Machine learning applications in cancer prognosis and prediction[J]. Comput Struct Biotechnol J, 2015, 13: 8-17.
|
[79] |
Atiyeh BS, Gunn SW, Hayek SN. State of the art in burn treatment[J]. World J Surg, 2005, 29(2): 131-148.
|
[80] |
Dyck L, Mills KHG. Immune checkpoints and their inhibition in cancer and infectious diseases[J]. Eur J Immunol, 2017, 47(5): 765-779.
|
[81] |
Hume DA, Ross IL, Himes SR, et al. The mononuclear phagocyte system revisited[J]. J Leukoc Biol, 2002, 72(4): 621-627.
|
[82] |
Liu L, Sun B. Neutrophil pyroptosis: new perspectives on sepsis[J]. Cell Mole Life Sci, 2019, 76(11): 2031-2042.
|
[83] |
Bohannon JK, Luan L, Hernandez A, et al. Role of G-CSF in monophosphoryl lipid A-mediated augmentation of neutrophil functions after burn injury[J]. J Leukoc Biol, 2016, 99(4): 629-640.
|
[84] |
Bohannon J, Cui W, Sherwood E, et al. Dendritic cell modification of neutrophil responses to infection after burn injury[J]. J Immunol, 2010, 185(5): 2847-2853.
|
[85] |
Zhang QH, Hao JW, Li GL, et al. Proinflammatory switch from Gαs to Gαi signaling by Glucagon-like peptide-1 receptor in murine splenic monocyte following burn injury[J]. Inflamm Res, 2018, 67(2): 157-168.
|
[86] |
Irimia D, Wang X. Inflammation-on-a-Chip: Probing the Immune System Ex Vivo[J]. Trends Biotechnol, 2018, 36(9): 923-937.
|
[87] |
Flohé SB, Agrawal H, Flohé S, et al. Diversity of interferon gamma and granulocyte-macrophage colony-stimulating factor in restoring immune dysfunction of dendritic cells and macrophages during polymicrobial sepsis[J]. Mol Med, 2008, 14(5/6): 247-256.
|
[88] |
Strother RK, Danahy DB, Kotov DI, et al. Polymicrobial Sepsis Diminishes Dendritic Cell Numbers and Function Directly Contributing to Impaired Primary CD8 T Cell Responses In Vivo[J]. J Immunol, 2016, 197(11): 4301-4311.
|
[89] |
Adema GJ. Dendritic cells from bench to bedside and back[J]. Immunol Lett, 2009, 122(2): 128-130.
|
[90] |
Oberholzer A, Oberholzer C, Efron PA, et al. Functional modification of dendritic cells with recombinant adenovirus encoding interleukin 10 for the treatment of sepsis[J]. Shock, 2005, 23(6): 507-515.
|
[91] |
Patil NK, Bohannon JK, Luan L, et al. Flt3 Ligand Treatment Attenuates T Cell Dysfunction and Improves Survival in a Murine Model of Burn Wound Sepsis[J]. Shock, 2017, 47(1): 40-51.
|
[92] |
Toliver-Kinsky TE, Lin CY, Herndon DN, et al. Stimulation of hematopoiesis by the Fms-like tyrosine kinase 3 ligand restores bacterial induction of Th1 cytokines in thermally injured mice[J]. Infect Immun, 2003, 71(6): 3058-3067.
|
[93] |
Patil NK, Luan L, Bohannon JK, et al. IL-15 Superagonist Expands mCD8+ T, NK and NKT Cells after Burn Injury but Fails to Improve Outcome during Burn Wound Infection[J]. PLoS One, 2016, 11(2): e0148452.
|
[94] |
Inoue S, Unsinger J, Davis CG, et al. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis[J]. J Immunol, 2010, 184(3): 1401-1409.
|
[95] |
Puel A, Ziegler SF, Buckley RH, et al. Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency[J]. Nat Genet, 1998, 20(2): 394-397.
|
[96] |
Unsinger J, McGlynn M, Kasten KR, et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis[J]. J Immunol, 2010, 184(7): 3768-3779.
|
[97] |
Hollmann C, Werner S, Avota E, et al. Inhibition of Acid Sphingomyelinase Allows for Selective Targeting of CD4+ Conventional versus Foxp3+ Regulatory T Cells[J]. J Immunol, 2016, 197(8): 3130-3141.
|
[98] |
Rice TC, Armocida SM, Kuethe JW, et al. Burn injury influences the T cell homeostasis in a butyrate-acid sphingomyelinase dependent manner[J]. Cell Immunol, 2017, 313: 25-31.
|
[99] |
Johnson BL 3rd, Rice TC, Xia BT, et al. Amitriptyline Usage Exacerbates the Immune Suppression Following Burn Injury[J]. Shock, 2016, 46(5): 541-548.
|
[100] |
Li X, Rana SN, Kovacs EJ, et al. Corticosterone suppresses mesenteric lymph node T cells by inhibiting p38/ERK pathway and promotes bacterial translocation after alcohol and burn injury[J]. Am J Physiol Regul Integr Comp Physiol, 2005, 289(1): R37-R44.
|
[101] |
Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis[J]. N Engl J Med, 2003, 348(2): 138-150.
|
[102] |
Chang KC, Burnham CA, Compton SM, et al. Blockade of the negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis[J]. Crit Care, 2013, 17(3): R85.
|
[103] |
Rožman P, Švajger U. The tolerogenic role of IFN-γ[J]. Cytokine Growth Factor Rev, 2018, 41: 40-53.
|
[104] |
Wilson JK, Zhao Y, Singer M, et al. Lymphocyte subset expression and serum concentrations of PD-1/PD-L1 in sepsis - pilot study[J]. Crit Care, 2018, 22(1): 95.
|
[105] |
Patil NK, Luan L, Bohannon JK, et al. Frontline Science: Anti-PD-L1 protects against infection with common bacterial pathogens after burn injury[J]. J Leukoc Biol, 2018, 103(1): 23-33.
|
[106] |
Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future[J]. J Clin Invest, 2015, 125(9): 3384-3391.
|
[107] |
Inoue S, Bo L, Bian J, et al. Dose-dependent effect of anti-CTLA-4 on survival in sepsis[J]. Shock, 2011, 36(1): 38-44.
|
[108] |
Shubin NJ, Chung CS, Heffernan DS, et al. BTLA expression contributes to septic morbidity and mortality by inducing innate inflammatory cell dysfunction[J]. J Leukoc Biol, 2012, 92(3): 593-603.
|
[109] |
Shubin NJ, Monaghan SF, Heffernan DS, et al. B and T lymphocyte attenuator expression on CD4+ T-cells associates with sepsis and subsequent infections in ICU patients[J]. Crit Care, 2013, 17(6): R276.
|
[110] |
Shindo Y, Unsinger J, Burnham CA, et al. Interleukin-7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression[J]. Shock, 2015, 43(4): 334-343.
|
[111] |
Zhang X, Cui Y, Ding X, et al. Analysis of mRNA-lncRNA and mRNA-lncRNA-pathway co-expression networks based on WGCNA in developing pediatric sepsis[J]. Bioengineered, 2021, 12(1): 1457-1470.
|
[112] |
Fang X, Duan SF, Gong YZ, et al. Identification of Key Genes Associated with Changes in the Host Response to Severe Burn Shock: A Bioinformatics Analysis with Data from the Gene Expression Omnibus (GEO) Database[J]. J Inflamm Res, 2020, 13: 1029-1041.
|
[113] |
Wu D, Zhou M, Li L, et al. The Time Course Pathological Changes After Burn Injury[J]. Inflammation, 2018, 41(5): 1864-1872.
|
[114] |
Davenport EE, Burnham KL, Radhakrishnan J, et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study[J]. Lancet Respir Med, 2016, 4(4): 259-271.
|
[115] |
Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge[J]. Contemp Oncol (Pozn), 2015, 19(1A): A68-77.
|
[116] |
Barrett T, Edgar R. Gene expression omnibus: microarray data storage, submission, retrieval, and analysis[J]. Methods Enzymol, 2006, 411: 352-369.
|
[117] |
Liu X, Rong Y, Huang D, et al. Altered Genes and Biological Functions in Response to Severe Burns[J]. BioMed Res Int, 2021, 2021: 8836243.
|
[118] |
Zou Q, Gao YB, Jin H, et al. [Screening of biomarkers related with leukocyte responses early after burn injury in mice by differential gene expression profiling][J]. Nan Fang Yi Ke Da Xue Xue Bao, 2017, 37(6): 767-773.
|
[119] |
庞晓清,潘莹,李建春,等. 脓毒症数据库简介[J]. 中华结核和呼吸杂志,2015, 38(2): 155-157.
|
[120] |
谢尔凡. 苏州市烧伤流行病学研究与烧伤数据库建立//第五届全国烧伤救治专题研讨会论文集[C]. 重庆:中华烧伤杂志编辑部,2007: 128-130.
|
[121] |
郝岱峰,柴家科,郭振荣,等. 烧伤外科临床资料数据库的建立与应用[J]. 军医进修学院学报,2005, 26(4): 256-258.
|
[122] |
王小如,靳有鹏,山东省儿童脓毒症诊治协作组. 儿童严重脓毒症数据库的建立及应用[J]. 中国小儿急救医学,2022, 29(4): 282-287.
|
[123] |
张学礼. 脓毒血症生物标志物的数据库构建及Meta分析[D]. 苏州:苏州大学,2016.
|