切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2025, Vol. 20 ›› Issue (05) : 431 -435. doi: 10.3877/cma.j.issn.1673-9450.2025.05.011

综述

多源信息融合下人工智能在慢性伤口管理中的精准应用与展望
石爽1, 王艺2, 史娜3, 徐微4,()   
  1. 1 102218 清华大学北京清华长庚医院伤口造口门诊
    2 102208 首都医科大学附属北京积水潭医院门诊部
    3 102208 首都医科大学附属北京积水潭医院烧伤整形与创面修复科
    4 102218 清华大学北京清华长庚医院护理部
  • 收稿日期:2025-07-14 出版日期:2025-10-01
  • 通信作者: 徐微

Precision applications and future prospects of artificial intelligence in chronic wound management via multi-source information fusion

Shuang Shi1, Yi Wang2, Na Shi3, Wei Xu4,()   

  1. 1 Department of Wound and Ostomy Clinic,Beijing Tsinghua Changgung Hospital,School of Clinical Medicine,Tsinghua Medicine,Tsinghua University,Beijing 102218,China
    2 Department of Outpatient,Beijing Jishuitan Hospital,Capital Medical University,Beijing 102208,China
    3 Department of Burns and Plastic Surgery,Beijing Jishuitan Hospital,Capital Medical University,Beijing 102208,China
    4 Department of Nursing Administration,Beijing Tsinghua Changgung Hospital,School of Clinical Medicine,Tsinghua Medicine,Tsinghua University,Beijing 102218,China
  • Received:2025-07-14 Published:2025-10-01
  • Corresponding author: Wei Xu
引用本文:

石爽, 王艺, 史娜, 徐微. 多源信息融合下人工智能在慢性伤口管理中的精准应用与展望[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 431-435.

Shuang Shi, Yi Wang, Na Shi, Wei Xu. Precision applications and future prospects of artificial intelligence in chronic wound management via multi-source information fusion[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2025, 20(05): 431-435.

慢性伤口作为全球公共卫生领域的重要难题,其管理方式及评估手段亟待技术革新。人工智能技术凭借强大的数据分析和模式识别能力,在慢性伤口的精准评估、治疗决策辅助、远程管理及个性化干预支持等方面展现出显著应用价值。通过系统综述近5年国内外人工智能在慢性伤口管理中的技术应用现状及临床实践,深入剖析现存挑战与不足,并对未来发展趋势进行前瞻性展望,以期为该领域的技术创新与临床转化提供参考。

Chronic wounds,as a critical challenge in global public health,urgently require technological innovation in management and assessment approaches. Artificial intelligence (AI),with its powerful data analysis and pattern recognition capabilities,has demonstrated significant application value in the precision assessment,treatment decision-making assistance,remote management,and personalized intervention support for chronic wounds. This paper systematically reviews the current status of AI technologies applied to chronic wound management and clinical practices both domestically and internationally over the past five years,deeply analyzes existing challenges and limitations,and provides forward-looking prospects for future development trends. The aim of this review is to provide a reference for technological innovation and clinical translation in this field.

[1]
蒋琪霞,朱冬梅. 皮肤和伤口循证护理规范[M]. 南京:东南大学出版社,2021:56-67.
[2]
熊元,曹发奇,刘梦非,等. 2023创伤骨科慢性难愈性创面诊疗指南:治疗概要[J]. 临床外科杂志202432(1):49-52.
[3]
World Health Organization. Chronic wound management: global perspective and challenges [R]. Geneva: WHO Press,2020.
[4]
刘安康,杨巧红,王延峰,等. 慢性伤口评估的最佳证据总结[J]. 护士进修杂志202338(18):1694-1699.
[5]
张霄. 《“十四五”全民健康信息化规划》印发[J]. 中医药管理杂志202230(21):136.
[6]
张霄. 三部门联合印发《卫生健康行业人工智能应用场景参考指引》[J]. 中医药管理杂志202432(22):35.
[7]
于营,赵芝鹤,杨婷婷. 基于全卷积神经网络的医学图像语义分割研究进展综述[J]. 电脑与电信2023(7):16-22.
[8]
Ge XDu LZheng S,et al. Development and application of an intelligent pressure injury assessment system using AI image recognition[J]. Technol Health Care202533(3):1358-1366.
[9]
Lei CJiang YXu K,et al. Convolutional neural network models for visual classification of pressure ulcer stages: cross-sectional study[J]. JMIR Med Inform202513:e62774.
[10]
王珍妮,须月萍,夏开建,等. 基于YOLO神经网络构建压力性损伤自动检测和分期的人工智能模型[J]. 中国全科医学202427(36):4582-4590.
[11]
张小丽,张元智,宋志红,等. 基于卷积神经网络评估伤口愈合模型的建立[J]. 内蒙古医科大学学报202446(S1):44-46.
[12]
Dabas MKapp SGefen A. Utilizing image processing techniques for wound management and evaluation in clinical practice: establishing the feasibility of implementing artificial intelligence in routine wound care[J]. Adv Skin Wound Care202538(1):31-39.
[13]
Hüsers JMoelleken MRichter ML,et al. An image based object recognition system for wound detection and classification of diabetic foot and venous leg ulcers[J]. Stud Health Technol Inform2022294:63-67.
[14]
彭英,郑海兰,祁明霞,等. 随机森林和决策树模型在糖尿病足患者预后不良风险预测中的效能比较[J]. 中国临床研究202538(4):524-528.
[15]
Deng JShi GYe Z,et al. Unveiling and swift diagnosing chronic wound healing with artificial intelligence assistance[J]. Chin Chem Lett202536(3):110496.
[16]
Curti NMerli YZengarini C,et al. Automated prediction of photographic wound assessment tool in chronic wound images[J]. J Med Syst202448(1):14.
[17]
郑洪伶,蒋璐,苏琼. 国际伤口感染研究所2022版《临床实践中的感染伤口——最佳实践原则》中伤口感染风险评估、识别和诊断内容解读[J]. 护理研究202337(15):2665-2672.
[18]
Viswanathan VGovindan SSelvaraj B,et al. A clinical study to evaluate autofluorescence imaging of diabetic foot ulcers using a novel artificial intelligence enabled noninvasive device[J]. Int J Low Extrem Wounds202423(1):169-176.
[19]
Howell RSLiu HHKhan AA,et al. Development of a method for clinical evaluation of artificial intelligence-based digital wound assessment tools[J]. JAMA Netw Open20214(5):e217234.
[20]
刘震东. 基于激光诱导石墨烯的多功能伤口监测传感器[D]. 浙江工业大学,2020:1-17.
[21]
Kalasin SSangnuang PSurareungchai W. Intelligent wearable sensors interconnected with advanced wound dressing bandages for contactless chronic skin monitoring: artificial intelligence for predicting tissue regeneration[J]. Anal Chem202294(18):6842-6852.
[22]
Yang FChen HShan Y,et al. Preventing postoperative moderate- and high-risk pressure injuries with artificial intelligence-powered smart decompression mattress on in middle-aged and elderly patients: a retrospective cohort analysis[J]. Br J Hosp Med202485(8):1-13.
[23]
Tusar MHFayyazbakhsh FZendehdel N,et al. AI-powered image-based assessment of pressure injuries using you only look once (YOLO) version 8 models[J]. Adv Wound Care2025.
[24]
鲁雪梅,王艺. 优玛国际伤口治疗师教程——伤口护理学[M]. 北京:中华医学电子音像出版社,2025:163-178.
[25]
Alderden JJohnny JBrooks KR,et al. Explainable artificial intelligence for early prediction of pressure injury risk[J]. Am J Crit Care202433(5):373-381.
[26]
李世玫,刘静. 人工智能压力性损伤图片分析系统对压力性损伤预后的影响分析[J]. 全科护理202422(19):3631-3634.
[27]
陈健,须月萍,徐晓丹,等. 基于卷积神经网络的深度学习方法对压力性损伤分期的研究[J]. 护士进修杂志202439(17):1800-1806.
[28]
谢华晓,王泠,贺影,等. 慢性伤口管理卫生经济学评价的研究现状及思考[J]. 中国护理管理202222(1):138-142.
[29]
冉倩,徐蔚蔚,孙航,等. 伤口愈合协会2023年《糖尿病足溃疡治疗指南(第3版)》解读[J]. 护理研究202539(7):1062-1067.
[30]
Mert MVahabi ADaştan AE,et al. Artificial intelligence's suggestions for level of amputation in diabetic foot ulcers are highly correlated with those of clinicians,only with exception of hindfoot amputations[J]. Int Wound J202421(10):e70055.
[31]
Oei CWChan YMZhang X,et al. Risk prediction of diabetic foot amputation using machine learning and explainable artificial intelligence[J]. J Diabetes Sci Technol202519(4):1008-1022.
[32]
Sun YGe LAng YG,et al. Cost-effectiveness and clinical outcomes of artificial intelligence-enhanced screening for diabetic foot ulcers: a simulation study[J]. Ann Acad Med Singapore202453(10):638-640.
[33]
Ardelean ABalta DFNeamtu C,et al. Personalized and predictive strategies for diabetic foot ulcer prevention and therapeutic management: potential improvements through introducing artificial intelligence and wearable technology[J]. Med Pharm Rep202497(4):419-428.
[34]
Ward ACDubey PBasnett P,et al. Toward a closed loop,integrated biocompatible biopolymer wound dressing patch for detection and prevention of chronic wound infections[J]. Front Bioeng Biotechnol20208:1039.
[35]
Habib MBBatool GShah NA,et al. Biofilm-mediated infections; novel therapeutic approaches and harnessing artificial intelligence for early detection and treatment of biofilm-associated infections[J]. Microb Pathog2025203:107497.
[36]
Alkhalefah SAlTuraiki IAltwaijry N. Advancing diabetic foot ulcer care: AI and generative AI approaches for classification,prediction,segmentation,and detection[J]. Healthcare202513(6):648.
[37]
Lo ZJMak MHWLiang S,et al. Development of an explainable artificial intelligence model for Asian vascular wound images[J]. Int Wound J202421(4):e14565.
[38]
Kim JKim MYoun H,et al. Method for enhancing AI accuracy in pressure injury detection using real and synthetic datasets[J]. Appl Sci202414(20):9396.
[39]
赵楠,周秋红,胡建中,等. 一种糖尿病足溃疡智能测量模型的构建与验证[J]. 中南大学学报(医学版)202146(10):1138-1146.
[40]
Salih SMurat KEmmanuel W,et al. The enlightening role of explainable artificial intelligence in chronic wound classification[J]. Electronics202110(12):1406.
[41]
Jiménez DRLozano LCCarrión SG,et al. Artificial intelligence methods for diagnostic and decision-making assistance in chronic wounds: a systematic review[J]. J Med Syst202549(1):29.
[42]
Rippon MGFleming LChen T,et al. Artificial intelligence in wound care: diagnosis,assessment and treatment of hard-to-heal wounds: a narrative review[J]. J Wound Care202433(4):229-242.
[43]
姚琼,王觅也,师庆科,等. 深度学习在现代医疗领域中的应用[J]. 计算机系统应用202231(4):33-46.
[44]
Moldwin ADemner-Fushman DGoodwin TR. Empirical findings on the role of structured data,unstructured data,and their combination for automatic clinical phenotyping[J]. AMIA Jt Summits Transl Sci Proc20212021:445-454.
[45]
Weggen AHochlenert DMertens M,et al. Enhancing outpatient wound care: applying AI to optimize treatment of patients with diabetic foot syndrome-the EPWUF-KI project[J]. Stud Health Technol Inform2024316:1031-1032.
[46]
刘安康. 基于深度学习的智能化压力性损伤创面评估模型研发[D]. 暨南大学,2023:56-57.
[47]
Pinnekamp HRentschler VMajjouti K,et al. Controlled pilot intervention study on the effects of an AI-based application to support incontinence-associated dermatitis and pressure injury assessment,nursing care and documentation: study protocol[J]. Res Nurs Health202548(4):419-428.
[1] 杨丽仙, 黄稚熙, 梁博诚, 欧阳淑媛, 陈明朗, 赵英丽, 马薇波, 缪敬, 王磊, 袁鹰. 基于产前时序超声数据的新生儿出生体重智能预测[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 721-732.
[2] 陈明朗, 许凯, 黄稚熙, 梁博诚, 贺杰, 黄海珊, 马微波, 谭莹, 邹志英, 刘晓棠, 彭桂艳, 陈家希, 钟晓红. MobileNetV4:面向产前超声的主动脉弓分支异常智能诊断研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 711-720.
[3] 江瑶, 蒋程, 余翔, 谭莹, 温昕, 温慧莹, 彭桂艳, 李胜利. 基于注意力机制改进的子宫解剖结构检测与分割多任务模型的性能评估[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 703-710.
[4] 刘晴晴, 俞劲, 徐玮泽, 张志伟, 潘晓华, 舒强, 叶菁菁. OBICnet图像分类模型在小儿先天性心脏病超声筛查中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(08): 754-760.
[5] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[6] 何冠南, 谭莹, 路玉欢, 蒲斌, 扬水华, 张仁铁, 陈明, 石智红, 钟晓红, 陈曦, 燕柳屹, 李胜利. 人工智能在胎儿超声心动图标准切面质量控制中的多中心应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 388-396.
[7] 陈茵, 谭莹, 谭渤瀚, 何冠南, 王磊, 温昕, 朱巧珍, 梁博诚, 李胜利. 基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 305-310.
[8] 张家乐, 田璐, 伍国胜, 刘莹莹, 李志, 吴琼, 纪世召. 浅析人工智能在海战烧伤诊疗中的应用前景[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 426-430.
[9] 郑仁杰, 张尊庶, 黄陈. 病理组学在胃癌诊治中的应用与挑战[J/OL]. 中华普通外科学文献(电子版), 2025, 19(04): 274-280.
[10] 王明媚, 李勇. 肾盂癌的影像诊断及进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 412-417.
[11] 詹彧鸣, 张翔, 翁山耕. 人工智能在腹膜后肿瘤精准诊疗中的研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 371-376.
[12] 郭寒川, 王乾宇, 吴斌. 人工智能在神经识别的研究进展及直肠癌自主神经保护的应用[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 273-276.
[13] 李媛媛, 李荣山. 机器学习:肾脏疾病研究与诊疗的新前沿[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 181-187.
[14] 卓莉. 人工智能和多组学:肾脏病诊疗的新方向[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 180-180.
[15] 王玲洁, 王瑷萍, 李朝军, 丁跃有, 杨德业, 赵清, 崔兆强, 王京昆, 王宏宇. 心脏和血管健康技术创新研发策略专家共识(2024第一次报告,上海)[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 323-336.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?