切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2026, Vol. 21 ›› Issue (01) : 58 -62. doi: 10.3877/cma.j.issn.1673-9450.2026.01.010

综述

表皮干细胞来源外泌体在创面修复中应用的研究进展
潘子杭1, 杨丽华2, 孙轶群3, 丁美军4, 薛珂3,5,()   
  1. 1 350122 福州,福建医科大学基础医学院
    2 200237 上海,华东理工大学生物反应器工程国家重点实验室
    3 571700 儋州,海南西部中心医院整复烧伤科
    4 237000 六安,皖西卫生职业学院附属医院烧伤整形科
    5 200011 上海交通大学附属第九人民医院整复外科
  • 收稿日期:2025-08-21 出版日期:2026-02-01
  • 通信作者: 薛珂
  • 基金资助:
    国家自然科学基金(82272290); 海南省自然科学基金(822CXTD537,823MS157)

Epidermal stem cell-derived exosomes for wound repair:a review

Zihang Pan1, Lihua Yang2, Yiqun Sun3, Meijun Ding4, Ke Xue3,5,()   

  1. 1 The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122,China
    2 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
    3 Department of Burn and Plastic Surgery, Hainan Western Central Hospital, Danzhou 571700, China
    4 Department of Burn and Plastic Surgery, Affiliated Hospital of Wanxi Health Vocational College, Lu'an 237000, China
    5 Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
  • Received:2025-08-21 Published:2026-02-01
  • Corresponding author: Ke Xue
引用本文:

潘子杭, 杨丽华, 孙轶群, 丁美军, 薛珂. 表皮干细胞来源外泌体在创面修复中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2026, 21(01): 58-62.

Zihang Pan, Lihua Yang, Yiqun Sun, Meijun Ding, Ke Xue. Epidermal stem cell-derived exosomes for wound repair:a review[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2026, 21(01): 58-62.

创面修复是目前亟需解决的重要临床问题,再上皮化延迟、色素脱失性瘢痕等愈合不良问题普遍存在,而现有的多种整形修复手段仍难以完全解决。表皮干细胞位于表皮基底层,具有自我更新和多向分化潜能,在皮肤再生中具有重要作用。其外泌体通过携带丰富的生物活性因子,调控和推动多阶段创面修复进程。因此有必要对表皮干细胞来源外泌体在创面修复中应用的研究进展进行系统综述,以期为急、慢性创面修复的新型治疗策略提供参考。

The issue of wound healing is a significant clinical concern that warrants immediate attention. For example, delayed re-epithelialization and hypopigmented scars are manifestations of impaired skin regeneration resulting from suboptimal healing processes. Furthermore, existing prognostic techniques for plastic surgery repair continue to be insufficient in fully addressing these challenges. Epidermal stem cells are situated in the basal layer and have the capacity for self-renewal and multipotent differentiation. Epidermal stem cells derived exosomes regulate and promote the multi-stage wound healing process by carrying abundant bioactive factors. Therefore, it is necessary to conduct a systematic review on the research progress of exosomes derived from epidermal stem cells in wound repair, with the aim of providing references for the development of new therapeutic strategies for acute and chronic wound repair.

[1]
Arda OGöksügür NTüzün Y. Basic histological structure and functions of facial skin[J]. Clin Dermatol201432(1):3-13. DOI:10.1016/j.clindermatol.2013.05.021.
[2]
de Szalay SWertz PW. Protective barriers provided by the epidermis[J]. Int J Mol Sci202324(4):3145. DOI:10.3390/ijms24043145.
[3]
Tienda-Vázquez MAHanel JMMárquez-Arteaga EM,et al. Exosomes:a promising strategy for repair,regeneration and treatment of skin disorders[J]. Cells202312(12):1625. DOI:10.3390/cells12121625.
[4]
Tang XWang JChen J,et al. Epidermal stem cells:skin surveillance and clinical perspective[J]. J Transl Med202422(1):779. DOI:10.1186/s12967-024-05600-1.
[5]
Yang RYang SZhao J,et al. Progress in studies of epidermal stem cells and their application in skin tissue engineering[J]. Stem Cell Res Ther202011(1):303. DOI:10.1186/s13287-020-01796-3.
[6]
Yu HFeng HZeng H,et al. Exosomes:the emerging mechanisms and potential clinical applications in dermatology[J]. Int J Biol Sci202420(5):1778-1795.
[7]
Hur YH. Epidermal stem cells:interplay with the skin microenvironment during wound healing[J]. Mol Cells202447(12):100138. DOI:10.1016/j.mocell.2024.100138.
[8]
Wiklander OPBBrennan Lötvall J,et al. Advances in therapeutic applications of extracellular vesicles[J]. Sci Transl Med201911(492):eaav8521. DOI:10.1126/scitranslmed.aav8521.
[9]
Guillamat-Prats R. The role of MSC in wound healing,scarring and regeneration[J]. Cells202110(7):1729. DOI:10.3390/cells10071729.
[10]
Tran PHLXiang DTran T,et al. Exosomes and nanoengineering:a match made for precision therapeutics[J]. Adv Mater202032(18):e1904040. DOI:10.1002/adma.201904040.
[11]
Simpson RJJensen SSLim JW. Proteomic profiling of exosomes:current perspectives[J]. Proteomics20088(19):4083-4099. DOI:10.1002/pmic.200800109.
[12]
Rehman FULiu YZheng M,et al. Exosomes based strategies for brain drug delivery[J]. Biomaterials2023293:121949. DOI:10.1016/j.biomaterials.2022.121949.
[13]
Kalluri RLeBleu VS. The biology,function,and biomedical applications of exosomes[J]. Science2020367(6478):eaau6977. DOI:10.1126/science.aau6977.
[14]
Krylova SVFeng D. The machinery of exosomes:biogenesis,release,and uptake[J]. Int J Mol Sci202324(2):1337. DOI:10.3390/ijms24021337.
[15]
Martínez-Greene JAHernández-Ortega KQuiroz-Baez R,et al. Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymer-based precipitation and size exclusion chromatography[J]. J Extracell Vesicles202110(6):e12087. DOI:10.1002/jev2.12087.
[16]
Gurung SPerocheau DTouramanidou L,et al. The exosome journey:from biogenesis to uptake and intracellular signalling[J]. Cell Commun Signal202119(1):47. DOI:10.1186/s12964-021-00730-1.
[17]
Wei HChen QLin L,et al. Regulation of exosome production and cargo sorting[J]. Int J Biol Sci202117(1):163-177. DOI:10.7150/ijbs.53671.
[18]
Avadanei-Luca SNacu IAvadanei AN,et al. Tissue regeneration of radiation-induced skin damages using protein/polysaccharide-based bioengineered scaffolds and adipose-derived stem cells:a review[J]. Int J Mol Sci202526(13):6469. DOI:10.3390/ijms26136469.
[19]
Broughton GJanis JEAttinger CE. Wound healing:an overview[J]. Plast Reconstr Surg2006117(Suppl 7):1e-S-32e-S. DOI:10.1097/01.prs.0000222562.60260.f9.
[20]
Wang PHHuang BSHorng HC,et al. Wound healing[J]. J Chin Med Assoc201881(2):94-101. DOI:10.1016/j.jcma.2017.11.002.
[21]
Falanga V. Wound healing and its impairment in the diabetic foot[J]. Lancet2005366(9498):1736-1743. DOI:10.1016/S0140-6736(05)67700-8.
[22]
肖梓腾,王婷禹,张雯雯,等. 外泌体与皮肤创伤的修复[J]. 中国组织工程研究202428(19):3104-3110. DOI:10.12307/2024.144.
[23]
Talbott HEMascharak SGriffin M,et al. Wound healing,fibroblast heterogeneity,and fibrosis[J]. Cell Stem Cell202229(8):1161-1180.
[24]
Guo SDipietro LA. Factors affecting wound healing[J]. J Dent Res201089(3):219-229. DOI:10.1177/0022034509359125.
[25]
Liu YZhang MLiao Y,et al. Human umbilical cord mesenchymal stem cell-derived exosomes promote murine skin wound healing by neutrophil and macrophage modulations revealed by single-cell RNA sequencing[J]. Front Immunol202314:1142088. DOI:10.3389/fimmu.2023.1142088.
[26]
Yunna CMengru HLei W,et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol2020877:173090. DOI:10.1016/j.ejphar.2020.173090.
[27]
Chen CLiu TTang Y,et al. Epigenetic regulation of macrophage polarization in wound healing[J]. Burns Trauma202311:tkac057. DOI:10.1093/burnst/tkac057.
[28]
Wang PTheocharidis GVlachos IS,et al. Exosomes derived from epidermal stem cells improve diabetic wound healing[J]. J Invest Dermatol2022142(9):2508-2517. e13. DOI:10.1016/j.jid.2022.01.030.
[29]
Yang HXu HWang Z,et al. Analysis of miR-203a-3p/SOCS3-mediated induction of M2 macrophage polarization to promote diabetic wound healing based on epidermal stem cell-derived exosomes[J]. Diabetes Res Clin Pract2023197:110573. DOI:10.1016/j.diabres.2023.110573.
[30]
Skaug BJiang XChen ZJ. The role of ubiquitin in NF-kappaB regulatory pathways[J]. Annu Rev Biochem200978:769-796. DOI:10.1146/annurev.biochem.78.070907.102750.
[31]
马嘉旭. 糖尿病创面免疫细胞谱系及表皮干细胞外泌体对缺血创面影响的研究[D]. 山东大学,2023.
[32]
Tellechea ABai SDangwal S,et al. Topical application of a mast cell stabilizer improves impaired diabetic wound healing[J]. J Invest Dermatol2020140(4):901-911. e11. DOI:10.1016/j.jid.2019.08.449.
[33]
Xu HYang HWang Z,et al. Epidermal stem cell derived exosomes alleviate excessive autophagy induced endothelial cell apoptosis by delivering miR200b-3p to diabetic wounds[J]. J Invest Dermatol2024144(5):1134-1147. e2. DOI:10.1016/j.jid.2023.08.030.
[34]
Kang DWang XChen W,et al. Epidermal stem cell-derived exosomes improve wound healing by promoting the proliferation and migration of human skin fibroblasts[J]. Burns Trauma202412:tkae047. DOI:10.1093/burnst/tkae047.
[35]
Veith APHenderson KSpencer A,et al. Therapeutic strategies for enhancing angiogenesis in wound healing[J]. Adv Drug Deliv Rev2019146:97-125. DOI:10.1016/j.addr.2018.09.010.
[36]
Kaushik KDas A. Endothelial progenitor cell therapy for chronic wound tissue regeneration[J]. Cytotherapy201921(11):1137-1150. DOI:10.1016/j.jcyt.2019.09.002.
[37]
曾繁润,林永勇,王君. 间充质干细胞外泌体促进创面血管新生机制的研究进展[J]. 中华损伤与修复杂志(电子版)202520(1):86-89. DOI:10.3877/cma.j.issn.1673-9450.2025.01.014.
[38]
Kanji SDas H. Advances of stem cell therapeutics in cutaneous wound healing and regeneration[J]. Mediators Inflamm20172017:5217967. DOI:10.1155/2017/5217967.
[39]
Sorg HSorg CGG. Skin wound healing:of players,patterns,and processes[J]. Eur Surg Res202364(2):141-157. DOI:10.1159/000528271.
[40]
Wäster PEriksson IVainikka L,et al. Extracellular vesicles are transferred from melanocytes to keratinocytes after UVA irradiation[J]. Sci Rep20166:27890. DOI:10.1038/srep27890.
[41]
Chavez-Muñoz CMorse JKilani R,et al. Primary human keratinocytes externalize stratifin protein via exosomes[J]. J Cell Biochem2008104(6):2165-2173. DOI:10.1002/jcb.21774.
[42]
Leng LMa JLv L,et al. Both Wnt signaling and epidermal stem cell-derived extracellular vesicles are involved in epidermal cell growth[J]. Stem Cell Res Ther202011(1):415. DOI:10.1186/s13287-020-01933-y.
[43]
宋勤琴,李双汝,李林,等. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J]. 中华损伤与修复杂志(电子版)202419(6):550-553. DOI:10.3877/cma.j.issn.1673-9450.2024.06.018.
[44]
Younesi FSMiller AEBarker TH,et al. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis[J]. Nat Rev Mol Cell Biol202425(8):617-638.
[45]
Rippa ALKalabusheva EPVorotelyak EA. Regeneration of dermis:scarring and cells involved[J]. Cells20198(6):607. DOI:10.3390/cells8060607.
[46]
Duan MZhang YZhang H,et al. Epidermal stem cell-derived exosomes promote skin regeneration by downregulating transforming growth factor-β1 in wound healing[J]. Stem Cell Res Ther202011(1):452. DOI:10.1186/s13287-020-01971-6.
[47]
甄妙,李婧婷,王鹏,等. 对表皮干细胞外泌体影响增生性瘢痕成纤维细胞作用的观察[J]. 中华损伤与修复杂志(电子版)202318(2):134-143. DOI:10.3877/cma.j.issn.1673-9450.2023.02.008.
[48]
Zhao SKong HQi D,et al. Epidermal stem cell derived exosomes-induced dedifferentiation of myofibroblasts inhibits scarring via the miR-203a-3p/PIK3CA axis[J]. J Nanobiotechnology202523(1):56. DOI:10.1186/s12951-025-03157-9.
[49]
Hu LWang JZhou X,et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts[J]. Sci Rep20166:32993. DOI:10.1038/srep32993.
[50]
Liang YHe JGuo B. Functional hydrogels as wound dressing to enhance wound healing[J]. ACS Nano202115(8):12687-12722. DOI:10.1021/acsnano.1c04206.
[51]
Lima TPLPassos MF. Skin wounds,the healing process,and hydrogel-based wound dressings:a short review[J]. J Biomater Sci Polym Ed202132(14):1910-1925. DOI:10.1080/09205063.2021.1946461.
[52]
Wang ZLu JYuan Z,et al. Natural carrier-free binary small molecule self-assembled hydrogel synergize antibacterial effects and promote wound healing by inhibiting virulence factors and alleviating the inflammatory response[J]. Small202319(5):e2205528. DOI:10.1002/smll.202205528.
[53]
An YLin STan X,et al. Exosomes from adipose-derived stem cells and application to skin wound healing[J]. Cell Prolif202154(3):e12993. DOI:10.1111/cpr.12993.
[54]
王献珍,李毅,吴晓伟,等. 过表达microRNA-26a大鼠表皮干细胞来源外泌体对深Ⅱ度烧伤大鼠创面愈合的影响[J]. 中国比较医学杂志202232(11):34-42,56. DOI:10.3969/j.issn.1671-7856.2022.11.005.
[55]
Zhang YLi MWang Y,et al. Exosome/metformin-loaded self-healing conductive hydrogel rescues microvascular dysfunction and promotes chronic diabetic wound healing by inhibiting mitochondrial fission[J]. Bioact Mater202326:323-336. DOI:10.1016/j.bioactmat.2023.01.020.
[56]
Xiong MZhang QHu W,et al. The novel mechanisms and applications of exosomes in dermatology and cutaneous medical aesthetics[J]. Pharmacol Res2021166:105490. DOI:10.1016/j.phrs.2021.105490.
[57]
王江文,易阳艳,朱元正. MSCs来源外泌体在创面修复中的研究进展[J]. 中国修复重建外科杂志201933(5):634-639. DOI:10.12677/SD. 2020. 104078.
[58]
后天,邱琳雯,周新珏,等. 干细胞外泌体促进皮肤损伤修复的研究进展[J]. 北京化工大学学报(自然科学版)202552(3):14-25. DOI:10.13543/j.bhxbzr.2025.03.002.
[1] 黄亭, 周伟, 石祥奎. 血浆叶酸代谢物指标异常与孕妇血浆、血浆外泌体及胎盘组织中血管内皮生长因子水平降低导致早发型子痫前期中的作用及相关性分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2025, 21(04): 452-459.
[2] 车可心, 熊枫, 杜伟力, 代强, 胡云刚, 王艺雯, 植林, 张慧君, 于东宁, 沈余明. 采用多种皮瓣修复下肢肌腱滑动性创面的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(05): 391-396.
[3] 王小双, 阮琼芳, 金冬梅, 韩彦, 曹萍, 李炳辉, 褚志刚. 高糖环境下成纤维细胞分泌CXCL11对人脐静脉内皮细胞迁移的影响及其机制[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(04): 339-346.
[4] 黄淳雨, 李文馨, 蒋上, 陈佳佳. 间充质干细胞来源外泌体在肝再生领域的应用[J/OL]. 中华移植杂志(电子版), 2025, 19(04): 268-273.
[5] 曾慧, 刘朝朝, 牛雷, 邓雅洁, 徐礼霞, 沙莎. 早期肺腺癌血清外泌体miRNA特征谱及诊断标志物筛选研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 891-896.
[6] 丁琳, 梁敏莉, 钟嘉琪, 李富荣. 干细胞外泌体临床转化挑战与应对策略[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(05): 301-311.
[7] 吴刚, 严燃星, 严鑫, 阎婧, 何跃明, 朱倩. 基于血清和组织外泌体多组学分析筛选胰腺癌诊断和预后标志物[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(06): 962-972.
[8] 罗臻, 韦鹏程, 孙馨, 李照. 肝细胞癌骨转移研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 522-527.
[9] 张宇坤, 王春林, 周珉玮, 李震洋, 周易明, 顾晓冬, 项建斌. 放疗诱导微卫星稳定型结直肠癌细胞外泌体成分变化及其增强CD8+T细胞功能的体外研究[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(06): 526-532.
[10] 陈澳, 皇甫少华, 陆雅斐, 江滨. 间充质干细胞来源的外泌体多层面治疗IBD的疗效及机制探讨[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(05): 474-480.
[11] 陈雨浩, 张楚悦, 绳春佳, 肖拓, 姜波, 蔡广研. 超声微泡辅助间充质干细胞来源外泌体超声引导的肾内递送对大鼠急性肾损伤的治疗作用[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 126-132.
[12] 葛程, 石燕红, 陶勇. 调节性T细胞外泌体对血管内皮细胞保护作用的实验研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 155-160.
[13] 马剑波, 许浩, 陈一笑. 人脐带间充质干细胞来源外泌体对脑出血后炎症反应和神经损伤的作用机制[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(05): 280-289.
[14] 张瑜, 薛建琴, 张抗, 孙美美. 外泌体在脑卒中诊断与治疗中的基础研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(05): 309-313.
[15] 王军, 陈娟, 刘茜红. 血浆外泌体circLPAR1在胃癌诊断及预后评估中的临床价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(04): 300-304.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?