切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2024, Vol. 19 ›› Issue (03) : 266 -270. doi: 10.3877/cma.j.issn.1673-9450.2024.03.014

综述

影像学技术在淋巴水肿诊疗中的应用进展
唐泽耀1, 邓呈亮2,()   
  1. 1. 563003 遵义医科大学附属医院烧伤整形外科
    2. 563003 遵义医科大学附属医院烧伤整形外科;563003 遵义医科大学组织损伤修复与再生医学省部共建协同创新中心
  • 收稿日期:2024-02-28 出版日期:2024-06-01
  • 通信作者: 邓呈亮
  • 基金资助:
    国家自然科学基金(82372541、82260391)

Application progress of imaging technology in the diagnosis and treatment of lymphedema

Zeyao Tang1, Chengliang Deng2,()   

  1. 1. Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
    2. Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Collaborative Innovation Center of Tissue Repair and Regenerative Medicine, Zunyi Medical University, Zunyi 563003, China
  • Received:2024-02-28 Published:2024-06-01
  • Corresponding author: Chengliang Deng
引用本文:

唐泽耀, 邓呈亮. 影像学技术在淋巴水肿诊疗中的应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(03): 266-270.

Zeyao Tang, Chengliang Deng. Application progress of imaging technology in the diagnosis and treatment of lymphedema[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2024, 19(03): 266-270.

淋巴水肿是由先天或后天因素导致淋巴系统发育异常或淋巴回流障碍所引发的慢性进展性疾病,其早期的诊断主要依据病史、临床表现和影像学检查。本文通过综述用于淋巴水肿的影像学检查方法,总结其各自在淋巴水肿诊断和治疗中的不同特点。目前在成像方式选择、分期系统等方面,临床应用尚缺乏统一的标准。本综述旨在指导临床医生应结合患者的具体情况和病情特点选择合适的检查方法,以达到准确诊断和选择最佳诊疗方案的目的。

Lymphedema is a chronic progressive disease caused by abnormal development of the lymphatic system or lymphatic reflux disorder caused by congenital or acquired factors. Its early diagnosis mainly depends on medical history, clinical manifestations and imaging examinations. Therefore, the different characteristics methods for lymphedema in the diagnosis and treatment of lymphedema were summarized. But there is still a lack of uniform standards in the selection of imaging methods and staging systems. The aim of paper is try to help doctors to select appropriate examination methods according to the specific conditions and characteristics of patients, so as to achieve the purpose of accurate diagnosis and selection of the best diagnosis and treatment plan.

[22]
Gregl AFischer Uvon Heyden D,et al.[Computed tomography and nuclear spin tomography in peripheral lymphedema] [J]. Rofo1985, 143(2):219-226.
[23]
Lohrmann CFoeldi ELanger M.Indirect magnetic resonance lymphangiography in patients with lymphedema preliminary results in humans[J].Eur J Radiol200659(3): 401-406.
[24]
Salehi BPSibley RCFriedman R,et al.MRI of lymphedema[J]. J Magn Reson Imaging2023, 57(4): 977-991.
[25]
Cellina MGibelli DMartinenghi C,et al.Non-contrast magnetic resonance lymphography (NCMRL) in cancer-related secondary lymphedema: acquisition technique and imaging findings[J]. Radiol Med2021126(11): 1477-1486.
[26]
Gadian DGPayne JABryant DJ, et al.Gadolinium-DTPA as a contrast agent in MR imaging--theoretical projections and practical observations[J].J Comput Assist Tomogr19859(2): 242-251.
[27]
Maki JHNeligan PCBriller N,et al.Dark blood magnetic resonance lymphangiography using dual-agent relaxivity contrast (darc-mrl):a novel method combining gadolinium and iron contrast agents[J]. Curr Probl Diagn Radiol201645(3): 174-179.
[28]
Yasunaga YKinjo YNakajima Y,et al.Impact of magnetic resonance lymphography on lymphaticolvenular anastomosis for lower-limb lymphedema[J].J Reconstr Microsurg202238(2): 121-128.
[29]
Yasunaga YNakajima YMimura S,et al.Magnetic resonance lymphography as three-dimensional navigation for lymphaticovenular anastomosis in patients with leg lymphedema [J]. J Plast Reconstr Aesthet Surg202174(6): 1253-1260.
[30]
Forte AJBoczar DHuayllani MT,et al.Use of magnetic resonance imaging lymphangiography for preoperative planning in lymphedema surgery:a systematic review[J]. Microsurgery, 2021, 41(4): 384-390.
[31]
Yamada KShinaoka AKimata Y.Three-dimensional imaging of lymphatic system in lymphedema legs using interstitial computed tomography-lymphography[J].Acta Med Okayama, 201771(2): 171-177.
[32]
贾鹏欢. CT三维重建技术在宫颈癌淋巴结转移评估中的应用价值 [D], 2021.
[33]
曹晓琴,殷捷. 多层螺旋CT三维重建对肺癌诊断及淋巴转移的预测价值 [J]. 中国临床研究2017, 30(6): 835-837.
[34]
Fujiyoshi TMikami THashimoto K,et al.Pathological changes in the lymphatic system of patients with secondary lower limb lymphedema based on single photon-emission computed tomography/computed tomography/lymphoscintigraphy images[J].Lymphat Res Biol2022, 20(2):144-152.
[35]
Broyles JMSmith JMWong FC, et al. Single-photon emission computed tomographic reverse lymphatic mapping for groin vascularized lymph node transplant planning[J].Plast Reconstr Surg2022150(4): 869e-879e.
[36]
Yoon HJWoo KJKim JY,et al.The added value of SPECT/CT lymphoscintigraphy in the initial assessment of secondary extremity lymphedema patients[J].Sci Rep202313(1): 19494.
[37]
Gentileschi SAlbanese RPino V,et al.SPECT/CT and fusion ultrasound to target the efferent groin lymph node for lymphatic surgery[J].Microsurgery201939(7): 605-612.
[38]
Hoelen CGde Mul FFPongers R,et al.Three-dimensional photoacoustic imaging of blood vessels in tissue [J].Opt Lett, 1998, 23(8): 648-650.
[39]
Kajita H, Kishi K. High-resolution imaging of lymphatic vessels with photoacoustic lymphangiography [J]. Radiology, 2019, 292(1): 35.
[40]
Suzuki YKajita HWatanabe S,et al.Application of photoacoustic imaging for lymphedema treatment[J].J Reconstr Microsurg2022, 38(3):254-262.
[41]
Kajita HOh AUrano M,et al.Photoacoustic lymphangiography[J]. J Surg Oncol2020121(1): 48-50.
[42]
Kajita HSuzuki YSakuma H,et al.Visualization of lymphatic vessels using photoacoustic imaging[J].Keio J Med202170(4): 82-92.
[43]
Suzuki YKajita HUrano M,et al.Measurement of lymphatic vessel depth using photoacoustic imaging [J].Lasers Surg Med202355(2): 164-168.
[44]
Oh AKajita HImanishi N,et al.Three-dimensional analysis of dermal backflow in cancer-related lymphedema using photoacoustic lymphangiography[J].Arch Plast Surg202249(1):99-107.
[45]
Watanabe SKajita HSuzuki Y,et al.Photoacoustic lymphangiography is a possible alternative for lymphedema staging[J].J Vasc Surg Venous Lymphat Disord202210(6): 1318-1324.e2.
[46]
Oh AKajita HMatoba E,et al.Photoacoustic lymphangiography before and after lymphaticovenular anastomosis[J].Arch Plast Surg2021, 48(3):323-328.
[47]
Nagy BIMohos BTzou CJ.Imaging modalities for evaluating lymphedema[J].Medicina (Kaunas)202359(11):2016.
[48]
Chen ZMilner TESrinivas S,et al.Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography [J]. Opt Lett, 199722(14):1119-1121.
[49]
Aumann SDonner SFischer J,et al.Optical coherencetomography (oct): principle and technical realization[M].[Internet],Springer,2019: 59-85.
[50]
Baran UChoi WJWang RK.Potential use of OCT-based microangiography in clinical dermatology[J].Skin Res Technol2016, 22(2):238-246.
[51]
Blatter C, Meijer EFJPadera TP,et al.Simultaneous measurements of lymphatic vessel contraction, flow and valve dynamics in multiple lymphangions using optical coherence tomography[J]. J Biophotonics, 201811(8): e201700017.
[52]
Nikolaev VVTrimassov IAAmirchanov DS,et al.An evaluation of lymphedema using optical coherence tomography: a rat limb model approach[J].Diagnostics (Basel)202313(17):2822.
[53]
Hayashi AYoshimatsu H, Visconti G,et al.Intraoperative real-time visualization of the lymphatic vessels using microscope-integrated laser tomography[J].J Reconstr Microsurg202137(5):427-435.
[1]
Sung C, Wang S, Hsu J, et al. Current understanding of pathological mechanisms of lymphedema[J]. Adv Wound Care (New Rochelle), 2022, 11(7): 361-373.
[2]
Brown S, Dayan JH, Kataru RP,et al.The vicious circle of stasis, inflammation, and fibrosis in lymphedema [J].Plast Reconstr Surg, 2023, 151(2): 330e-341e.
[3]
Lin WCSafa BBuntic RF.Approach to lymphedema management[J]. Semin Plast Surg202236(4): 260-273.
[4]
Rockson SG.Advances in lymphedema[J].Circ Res2021128(12): 2003-2016.
[5]
Burnier P, Niddam J, Bosc R, et al.Indocyanine green applications in plastic surgery: a review of the literature [J]. J Plast Reconstr Aesthet Surg2017, 70(6): 814-827.
[6]
Ogata F, Azuma R, Kikuchi M, et al. Novel lymphography using indocyanine green dye for near-infrared fluorescence labeling [J]. Ann Plast Surg, 2007, 58(6): 652-655.
[7]
Yamamoto TYamamoto NDoi K,et al.Indocyanine green-enhanced lymphography for upper extremity lymphedema: a novel severity staging system using dermal backflow patterns[J].Plast Reconstr Surg2011128(4): 941-947.
[8]
Chao AHSchulz SAPovoski SP.The application of indocyanine green (ICG) and near-infrared (NIR) fluorescence imaging for assessment of the lymphatic system in reconstructive lymphaticovenular anastomosis surgery[J].Expert Rev Med Devices2021, 18(4): 367-374.
[9]
Meng XLi HChen Y,et al.In vivo precision evaluation of lymphatic function by swir luminescence imaging with pbs quantum dots[J].Adv Sci(Weinh)202310(7): e2206579.
[10]
Pappalardo MCheng MH.Lymphoscintigraphy for the diagnosis of extremity lymphedema: current controversies regarding protocol, interpretation, and clinical application[J].J Surg Oncol2020, 121(1): 37-47.
[11]
Cheng MHPappalardo MLin C,et al.Validity of the novel taiwan lymphoscintigraphy staging and correlation of cheng lymphedema grading for unilateral extremity lymphedema[J]. Ann Surg2018, 268(3): 513-525.
[12]
Mcmeekin HJPeters AMBurniston MT,et al.Quantitative lymphoscintigraphy of the lower limbs for the diagnosis of phlebolymphoedema[J].Nucl Med Commun202344(12): 1080-1086.
[13]
Szuba AShin WSStrauss HW,et al.The third circulation: radionuclide lymphoscintigraphy in the evaluation of lymphedema [J].J Nucl Med200344(1):43-57.
[14]
Gniadecka M.Localization of dermal edema in lipodermatosclerosis, lymphedema, and cardiac insufficiency. High-frequency ultrasound examination of intradermal echogenicity[J].J Am Acad Dermatol, 199635(1):37-41.
[15]
Hayashi AGiacalone GYamamoto T,et al.Ultra high-frequency ultrasonographic imaging with 70 MHz scanner for visualization of the lymphatic vessels [J]. Plast Reconstr Surg Glob Open, 2019, 7(1): e2086.
[16]
Mihara MHara HKawakami Y.Ultrasonography for classifying lymphatic sclerosis types and deciding optimal sites for lymphatic-venous anastomosis in patients with lymphoedema<sup/> [J].J Plast Reconstr Aesthet Surg201871(9):1274-1281.
[17]
Mohos BCzedik-eysenberg M, Steinbacher J, et al. Long-term use of ultrasound for locating optimal lva sites: a descriptive data analysis[J].J Reconstr Microsurg202238(3): 238-244.
[18]
Hara HMihara M.Ultrasound-guided lymphaticovenous anastomosis without indocyanine green lymphography mapping: a preliminary report[J]. Microsurgery202343(3):238-244.
[19]
Sever ABroillet ASchneider M,et al.Dynamic visualization of lymphatic channels and sentinel lymph nodes using intradermal microbubbles and contrast-enhanced ultrasound in a swine model and patients with breast cancer[J].J Ultrasound Med201029(12): 1699-1704.
[20]
Jang SLee CUHesley GK,et al.Lymphatic mapping using us microbubbles before lymphaticovenous anastomosis surgery for lymphedema[J].Radiology2022304(1):218-224.
[21]
Hayashi AHayashi NYoshimatsu H,et al.Effective and efficient lymphaticovenular anastomosis using preoperative ultrasound detection technique of lymphatic vessels in lower extremity lymphedema[J]. J Surg Oncol2018117(2): 290-298.
[1] 马旦杰, 黄品同, 徐琛, 周芳芳, 潘敏强. 超声造影LI-RADS系统联合甲胎蛋白对有无高危因素背景人群肝细胞癌的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(03): 288-296.
[2] 程燕妮, 樊菁, 肖瑶, 舒瑞, 明昊, 党晓智, 宋宏萍. 乳腺组织定位标记夹的应用与进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 361-365.
[3] 王培蕾, 夏罕生, 俞清, 闻捷先, 黄备建. IgG4相关性乳腺炎多模态影像学表现及其治疗转归一例[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 244-247.
[4] 王雅楠, 刘丹, 曹正浓, 贾慧敏. 儿童迟发性先天性膈疝患儿的临床诊治特点分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 410-419.
[5] 王典, 刘双赫, 曾峥. 肩关节镜术后肌肉功能改变对颈椎形态及矢状面参数影响的自身前后对照队列研究[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 371-378.
[6] 唐金侨, 叶宇佳, 王港, 赵彬, 马艳宁. 医学影像学检查方法在颞下颌关节紊乱病中临床应用研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 406-411.
[7] 王华, 曹素娥, 吴建杰, 狄金明. 膀胱炎性肌纤维母细胞瘤四例诊治报告并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 547-552.
[8] 赖圣杰, 方欣, 方友强. 2023年欧洲内分泌学会及加拿大泌尿外科学会肾上腺偶发瘤诊疗指南解读[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 309-312.
[9] 罗道首, 陈树林, 李向东, 李小荣, 柯赛, 崔文志, 何小华. 大细胞肺癌患者的影像学特点及病理临床特征分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 642-644.
[10] 王洪, 王骏华, 范建楠. 人工智能技术在肩袖损伤中的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(04): 356-361.
[11] 潘冬生, 梁国标. 颅脑创伤治疗的最新进展与未来趋势[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 193-197.
[12] 甘曦, 廖鑫. 胃癌旁肿瘤沉积与CT影像学特征、血清指标及病理特征的关联性分析[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 422-425.
[13] 张芳芳, 李军, 赵玉洁, 于彤, 宁春平. 侵袭性血管黏液瘤的影像学特征并文献复习[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 254-259.
[14] 林盼盼, 张晓磊, 吴仁华. 人文视域下的医学影像诊断学教学改革探索[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 188-192.
[15] 沙宇惠, 梁梦琳, 贾琛皓, 吴娟娟, 张天昊, 朱以诚, 崔瑞雪, 倪俊. 脑淀粉样血管病β淀粉样蛋白沉积特征及其与影像学标志物的关系[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(04): 301-308.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?