切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2015, Vol. 10 ›› Issue (02) : 175 -179. doi: 10.3877/cma.j.issn.1673-9450.2015.02.014

所属专题: 文献

综述

脓毒症心肌线粒体改变与干预的研究进展
何鑫1, 张勤1,()   
  1. 1. 200025 上海交通大学医学院附属瑞金医院灼伤整形外科
  • 收稿日期:2015-02-21 出版日期:2015-04-01
  • 通信作者: 张勤

Research progress in the changes and management of myocardial mitochondria during sepsis

Xin He1, Qin Zhang1,()   

  1. 1. Department of Burn and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Received:2015-02-21 Published:2015-04-01
  • Corresponding author: Qin Zhang
  • About author:
    Corresponding author: Zhang Qin, Email:
引用本文:

何鑫, 张勤. 脓毒症心肌线粒体改变与干预的研究进展[J]. 中华损伤与修复杂志(电子版), 2015, 10(02): 175-179.

Xin He, Qin Zhang. Research progress in the changes and management of myocardial mitochondria during sepsis[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2015, 10(02): 175-179.

约50%的脓毒症患者合并心脏收缩功能降低和心输出量减少,约11.4%患者甚至出现心功能衰竭。目前认为,脓毒症时心肌线粒体形态和功能的改变是心肌收缩功能降低的重要原因。长期以来人们对脓毒症时的心肌线粒体改变与干预的基础和临床研究开展了大量的实验。本文就近年来国内外有关脓毒症时心肌线粒体结构、功能、自噬作用、凋亡作用的改变与干预方面的研究进展做了总结论述。

Reduction of cardiac output and systolic function occurs in almost 50% septic patients .Meanwhile, 11.4% of them develop heart failure.Recently, it is believed that structural and functional changes of myocardial mitochondria are the main causes of cardiac systolic function's reduction during sepsis. There have been a lot of the basic and clinical studies on septic changes and management of myocardial mitochondria for a long time. This review tries to summarize the domestic and foreign research progresses in the changes and management concerning the structure and function of myocardial mitochondria, mitophagy as well as apoptosis during sepsis.

1
Zhou J, Qian C, Zhao M, et al. Epidemiology and outcome of severe sepsis and septic shock in intensive care units in mainland china[J]. PLoS One, 2014, 9(9): e107181.
2
Harrois A, Huet O, Duranteau J, et al. Alterations of mitochondrial function in sepsis and critical illness[J]. Curr Opin Anaesthesiol, 2009, 22(2): 143-149.
3
Gotloib L, Shostak A, Galdi P, et al. Loss of microvascular negative charges accompanied by interstitial edema in septic rats′ heart[J]. Circ Shock, 1992, 36(1): 45-56.
4
Suliman HB, Welty-Wolf KE, Carraway M, et al. Lipopolysaccharide induces oxidative cardiac mitochondrial damage and biogenesis[J]. Cardiovasc Res, 2004, 64(2): 279-288.
5
Soriano FG, Nogueira AC, Caldini EG, et al. Potential role of poly(adenosine 5′-diphosphate-ribose) polymerase activation in the pathogenesis of myocardial contractile dysfunction associated with human septic shock[J]. Crit Care Med, 2006, 34(4): 1073-1079.
6
Ahmed LA. Protective effects of magnesium supplementation on metabolic energy derangements in lipopolysaccharide-induced cardiotoxicity in mice[J]. Eur J Pharmacol, 2012, 694(1-3): 75-81.
7
Smeding L, Leong-Poi H, Hu P, et al. Salutary effect of resveratrol on sepsis-induced myocardial depression[J]. Crit Care Med, 2012, 40(6): 1896-1907.
8
Smeding L, Plötz FB, Groeneveld AB, et al. Structural changes of the heart during severe sepsis or septic shock[J]. Shock, 2012, 37(5): 449-456.
9
Vanasco V, Saez T, Magnani ND, et al. Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery[J]. Free Radic Biol Med, 2014, 77: 1-9.
10
Vanasco V, Magnani ND, Cimolai MC, et al. Endotoxemia impairs heart mitochondrial function by decreasing electron transfer, ATP synthesis and ATP content without affecting membrane potential[J]. J Bioenerg Biomembr, 2012, 44(2): 243-252.
11
Correa TD, Vuda M, Blaser AR, et al. Effect of treatment delay on disease severity and need for resuscitation in porcine fecal peritonitis[J]. Crit Care Med, 2012, 40(10): 2841-2849.
12
Regueira T, Djafarzadeh S, Brandt S, et al. Oxygen transport and mitochondrial function in porcine septic shock, cardiogenic shock, and hypoxaemia[J]. Acta Anaesthesiol Scand, 2012, 56(7): 846-859.
13
Duarte S, Arango D, Parihar A, et al. Apigenin protects endothelial cells from lipopolysaccharide (LPS)-induced inflammation by decreasing caspase-3 activation and modulating mitochondrial function[J]. Int J Mol Sci, 2013, 14(9): 17664-17679.
14
Groening P, Huang Z, La Gamma EF, et al. Glutamine restores myocardial cytochrome C oxidase activity and improves cardiac function during experimental sepsis[J]. JPEN J Parenter Enteral Nutr, 2011, 35(2): 249-254.
15
Verma R, Huang Z, Deutschman CS, et al. Caffeine restores myocardial cytochrome oxidase activity and improves cardiac function during sepsis[J]. Crit Care Med, 2009, 37(4): 1397-1402.
16
Rocha M, Herance R, Rovira S, et al. Mitochondrial dysfunction and antioxidant therapy in sepsis[J]. Infect Disord Drug Targets, 2012, 12(2): 161-178.
17
Supinski GS, Murphy MP, Callahan LA. MitoQ administration prevents endotoxin-induced cardiac dysfunction[J]. Am J Physiol Regul Integr Comp Physiol, 2009, 297(4): 1095-1102.
18
Zang QS, Sadek H, Maass DL, et al. Specific inhibition of mitochondrial oxidative stress suppresses inflammation and improves cardiac function in a rat pneumonia-related sepsis model[J]. Am J Physiol Heart Circ Physiol, 2012, 302(9): H1847-H1859.
19
Torraco A, Carrozzo R, Piemonte F, et al. Effects of levosimendan on mitochondrial function in patients with septic shock: a randomized trial[J]. Biochimie, 2014, 102: 166-173.
20
Hao E, Lang F, Chen Y, et al. Resveratrol alleviates endotoxin-induced myocardial toxicity via the Nrf2 transcription factor[J]. PLoS One, 2013, 8(7): e69452.
21
Pan S, Wang N, Bisetto S, et al. Downregulation of adenine nucleotide translocator 1 exacerbates tumor necrosis factor-α mediated cardiac inflammatory responses[J]. Am J Physiol Heart Circ Physiol, 2015, 308(1): H39-H48.
22
Zhu H, Shan L, Schiller PW, et al. Histone deacetylase-3 activation promotes tumor necrosis factor-alpha (TNF-alpha) expression in cardiomyocytes during lipopolysaccharide stimulation[J]. J Biol Chem, 2010, 285(13): 9429-9436.
23
López A, Lorente JA, Steingrub J, et al. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock[J]. Crit Care Med, 2004, 32(1): 21-30.
24
Escames G, López LC, Ortiz F, et al. Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice[J]. FEBS J, 2007, 274(8): 2135-2147.
25
Ortiz F, García JA, Acuña-Castroviejo D, et al. The beneficial effects of melatonin against heart mitochondrial impairment during sepsis: inhibition of iNOS and preservation of nNOS[J]. J Pineal Res, 2014, 56(1): 71-81.
26
Xu C, Yi C, Wang H, et al. Mitochondrial nitric oxide synthase participates in septic shock myocardial depression by nitric oxide overproduction and mitochondrial permeability transition pore opening[J]. Shock, 2012, 37(1): 110-115.
27
Valerio A, Nisoli E. Nitric oxide, interorganelle communication, and energy flow: a novel route to slow aging[J]. Front Cell Dev Biol, 2015, 3(6): 1-11.
28
Bangash MN, Kong ML, Pearse RM. Use of inotropes and vasopressor agents in critically ill patients[J]. Br J Pharmacol, 2012, 165(7): 2015-2033.
29
Vajapey R, Rini D, Walston J. The impact of age-related dysregulation of the angiotensin system on mitochondrial redox balance[J]. Front Physiol, 2014, 24(5): 439.
30
Yang CS, Yuk JM, Kim JJ, et al. Small heterodimer partner-targeting therapy inhibits systemic inflammatory responses through mitochondrial uncoupling protein 2[J]. PLoS One, 2013, 8(5): e63435.
31
Righi V, Constantinou C, Mintzopoulos D, et al. Mitochondria-targeted antioxidant promotes recovery of skeletal muscle mitochondrial function after burn trauma assessed by in vivo 31P nuclear magnetic resonance and electron paramagnetic resonance spectroscopy[J]. FASEB J, 2013, 27(6): 2521-2530.
32
Zang QS, Martinez B, Yao X, et al. Sepsis-induced cardiac mitochondrial dysfunction involves altered mitochondrial-localization of tyrosine kinase Src and tyrosine phosphatase SHP2[J]. PLoS One, 2012, 7(8): e43424.
33
Drosatos K, Khan RS, Trent CM, et al. Peroxisome proliferator-activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice[J]. Circ Heart Fail, 2013, 6(3): 550-562.
34
Piquereau J, Godin R, Deschênes S, et al. Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction[J]. Autophagy, 2013, 9(11): 1837-1851.
35
Hsieh CH, Pai PY, Hsueh HW, et al. Complete induction of autophagy is essential for cardioprotection in sepsis[J]. Annals of surgery, 2011, 253(6): 1190-1200.
36
Yuan H, Perry CN, Huang C, et al. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection[J]. Am J Physiol Heart Circ Physiol, 2009, 296(2): H470-H479.
37
Turdi S, Han X, Huff AF, et al. Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced myocardial contractile dysfunction: role of autophagy[J]. Free Radic Biol Med, 2012, 53(6): 1327-1338.
38
Unuma K, Aki T, Funakoshi T, et al. Cobalt protoporphyrin accelerates TFEB activation and lysosome reformation during LPS-induced septic insults in the rat heart[J]. PLoS One, 2013, 8(2): e56526.
39
Li L, Hu BC, Chen CQ, et al. Role of mitochondrial damage during cardiac apoptosis in septic rats[J]. Chin Med J (Engl), 2013, 126(10): 1860-1866.
40
Takasu O, Gaut JP, Watanabe E, et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis[J]. Am J Respir Crit Care Med, 2013, 187(5): 509-517.
41
Yang Z, Liu Y, Deng W, et al. Hesperetin attenuates mitochondria-dependent apoptosis in lipopolysaccharide-induced H9C2 cardiomyocytes[J]. Mol Med Rep, 2014, 9(5): 1941-1946.
42
Tsai KL, Liang HJ, Yang ZD, et al. Early inactivation of PKCε associates with late mitochondrial translocation of Bad and apoptosis in ventricle of septic rat[J]. J Surg Res, 2014, 186(1): 278-286.
43
Tien YC, Lin JY, Lai CH, et al. Carthamus tinctorius L. prevents LPS-induced TNFalpha signaling activation and cell apoptosis through JNK1/2-NFkappaB pathway inhibition in H9c2 cardiomyoblast cells[J]. J Ethnopharmacol, 2010, 130(3): 505-513.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[3] 孙佳英, 黄云洲, 任书堂, 王翠华, 陈新华, 于艾嘉, 陈元禄. 无创心肌做功对左束支传导阻滞患者左心室整体及节段心肌收缩功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(08): 836-843.
[4] 金姗, 丁雪晏, 蔡绮哲, 李一丹, 赵智玲, 郭兮恒, 吕秀章. 左心室压力-应变环对阻塞型睡眠呼吸暂停综合征患者心肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(06): 575-580.
[5] 应康, 杨璨莹, 刘凤珍, 陈丽丽, 刘燕娜. 左心室心肌应变对无症状重度主动脉瓣狭窄患者的预后评估价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 581-587.
[6] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[7] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[8] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[9] 李晓玉, 江庆, 汤海琴, 罗静枝. 围手术期综合管理对胆总管结石并急性胆管炎患者ERCP +LC术后心肌损伤的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 57-60.
[10] 朱翔宇, 王建美, 张辉, 叶红英. 无创左心室压力-应变循环技术在左心室功能参数与肝硬化的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 494-498.
[11] 张生怀. 急性心肌梗死致心源性猝死救治分析一例[J]. 中华临床医师杂志(电子版), 2023, 17(08): 924-926.
[12] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[13] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[14] 张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要