33 |
Le Gall C, Bellahcène A, Bonnelye E, et al. A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden[J]. Cancer Res, 2007, 67(20): 9894-9902.
|
34 |
Jensen AB, Wynne C, Ramirez G, et al. The cathepsin K inhibitor odanacatib suppresses bone resorption in women with breast cancer and established bone metastases: Results of a 4-week, double-blind, randomized, controlled trial[J]. Clin Breast Cancer, 2010, 10(6): 452-458.
|
35 |
Ondoua A, Rodriquez J, Hanlon K, et al. Multivalent cathepsin inhibitor, VBY-825, attenuates breast-cancer induced bone remodeling and pain[J]. J Pain, 2012, 13(4): S43.
|
36 |
Gallwitz WE, Guise TA, Mundy GR. Guanosine nucleotides inhibit different syndromes of PTHrP excess caused by human cancers in vivo[J]. J Clin Invest, 2002, 110(10): 1559-1572.
|
37 |
Leow PC, Tian Q, Ong ZY, et al. Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/β-catenin antagonists against human osteosarcoma cells[J]. Invest New Drugs, 2010, 28(6): 766-782.
|
38 |
Chen QY, Zheng Y, Jiao DM, et al. Curumin inhibits lung cancer cell migration and invasion through Rac1-dependent signaling pathway[J]. J Nutr Biochem, 2014, 25(2): 177-185.
|
1 |
Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity[J]. Clin Cancer Res, 2006, 12(20 Pt 2): 6243s-6249s.
|
2 |
Rosen LS, Gordon D, Tchekmedyian S, et al. Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: a phase III, double-blind, randomized trial-The Zoledronic Acid Lung Cancer and Other Solid Tumors Study Group[J]. J Clin Oncol, 2003, 21(16): 3150-3157.
|
3 |
Delea TE, McKiernan J, Brandman J, et al. Impact of skeletal complications on total medical care costs among patients with bone metastases of lung cancer[J]. J Thorac Oncol, 2006, 1(6): 571-576.
|
4 |
Delea TE, McKiernan J, Brandman J, et al. Retrospective study of the effect of skeletal complications on total medical care costs in patients with bone metastases of breast cancer seen in typical clinical practice[J]. J Support Oncol, 2006, 4(7): 341-347.
|
5 |
Delank KS, Wendtner C, Eich HT, et al. The treatment of spinal metastases[J]. Dtsch Arzt Int, 2011, 108(5): 71-80.
|
6 |
Hsu H, Lacey DL, Dunstan CR, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand[J]. Proc Natl Acad Sci USA, 1999, 96(7): 3540-3545.
|
7 |
Roodman GD. Mechanisms of bone metastasis[J]. N Engl J Med, 2004, 350(16): 1655-1664.
|
8 |
Nguyen DX, Chiang AC, Zhang XH-F, et al. WNT/TCF signaling through LEF1 and HOXB 9 mediates lung adenocarcinoma metastasis[J]. Cell, 2009, 138(1): 51-62.
|
9 |
Bromme D, Okamoto K, Wang BB, et al. Human cathepsin O2, a matrix protein-degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin O2 in Spodoptera frugiperda and characterization of the enzyme[J]. J Biol Chem, 1996, 271(4): 2126-2132.
|
10 |
Gamero P, Borel O, Byrjalsen I, et al. The collagenolytic activity of cathepsin K is unique among mammalian proteinases[J]. J Biol Chem, 1998, 273(48): 32347-32352.
|
11 |
Wilson SR, Peters C, Saftig P, et al. Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption[J]. J Biol Chem, 2009, 284(4): 2584-2592.
|
12 |
Maeda T, Alexander CM, Friedl A. Induction of syndecan-1 expression in stromal fibroblasts promotes proliferation of human breast cancer cells[J]. Cancer Res, 2004, 64(2): 612-621.
|
13 |
Powle T, Paterson S, Kanis JA, et al. Randomized, placebo-controlled trial of clodronate in patients with primary operable breast cancer[J]. J Clin Oncol, 2002, 20(15): 3219-3224.
|
14 |
Bussard KM, Gay CV, Mastro AM. The bone microenvironment in metastasis; what is special about bone[J]. Cancer Metastasis Rev, 2008, 27(1): 41-55.
|
15 |
Thomas RJ, Guise TA, Yin JJ, et al. Breast cancer cells interact with osteoblasts to support osteoclast formation[J]. Endocrinology, 1999, 140(10): 4451-4458.
|
16 |
Guise TA, Yin JJ, Taylor SD, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis[J]. J Clin Invest, 1996, 98(7): 1544-1549.
|
17 |
Yoneda T, Hiraga T. Crosstalk between cancer cells and bone microenvironment in bone metastasis[J]. Biochem Biophys Res Commun, 2005, 328(3): 679-687.
|
18 |
Fleisch H. Development of bisphosphonates[J]. Breast Cancer Res, 2002, 4(1): 30-34.
|
19 |
Green J, Clézardin P. The molecular basis of bisphosphonate activity: a preclinical perspective[J]. Semin Oncol, 2010, 37 Suppl 1: S3-S11.
|
20 |
Rosen L, Harland SJ, Osterlinck W. Broad clinical activity of zoledronic acid in osteolytic to osteoblastic bone lesions in patients with a broad range of solid tumors[J]. Am J Clin Oncol, 2002, 25(6 Suppl 1): S19-S24.
|
21 |
Pavlakis N, Schmidt R, Stockler M. Bisphosphonates for breast cancer[J]. Cochrane Database Syst Rev, 2005, (3): CD003474.
|
22 |
Rosen LS, Gordon DH, Kaminski M, et al. Long-term ef?cacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter comparative trial[J]. Cancer, 2003, 98(8): 1735-1744.
|
23 |
Rosen LS, Gordon DH, Dugan W Jr, et al. Zoledronic acid is superior to pamidronate for the treatment of bone metastases in breast carcinoma patients with at least one osteolytic lesion[J]. Cancer, 2004, 100(1): 36-43.
|
24 |
Filleul O, Crompot E, Saussez S. Bisphosphonate-induced osteonecrosis of the jaw: a review of 2, 400 patient cases[J]. J Cancer Res Clin Oncol, 2010, 136(8): 1117-1124.
|
25 |
Palaska PK, Cartsos V, Zavras AI. Bisphosphonates and time to osteonecrosis development[J]. Oncologist, 2009, 14(11): 1154-1166.
|
26 |
Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study[J]. Lancet, 2011, 377(9768): 813-822.
|
27 |
Stopeck AT, Lipton A, Body JJ, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study[J]. J Clin Oncol, 2010, 28(35): 5132-5139.
|
28 |
Henry DH, Costa L, Goldwasser F, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma[J]. J Clin Oncol, 2011, 29(9): 1125-1132.
|
29 |
Lipton A, Fizazi K, Stopeck A. Effect of denosumab versus zoledronic acid (ZA) in preventing skeletal-related events (SREs) in patients with metastatic bone disease: Subgroup analyses by baseline characteristics[J]. J of Clin Oncol, 2014, 32(15 suppl 1).
|
30 |
ScagliottiGV, Hirsh V, Siena S, et al. Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: subgroup analysis from a randomized phase 3 study[J]. J Thorac Oncol, 2012, 7(12): 1823-1829.
|
39 |
Busch AM, Johnson KC, Stan RV, et al. Evidence for tankyrases as antineoplastic targets in lung cancer[J]. BMC Cancer, 2013, 13: 211.
|
40 |
Lau T, Chan E, Callow M, et al. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth[J]. Cancer Res, 2013, 73(10): 3132-3144.
|
31 |
Fizazi K, Coleman R, Klotz L, et al. Prevention of symptomatic skeletal events in patients with genitourinary (GU) tumors and bone metastases treated with denosumab or zoledronic acid[J]. Eur Urol Suppl, 2014, 13(1): e869.
|
32 |
Kawatani M, Osada H. Osteoclast-targeting small molecules for the treatment of neoplastic bone metastases[J]. Cancer Sci, 2009, 100(11): 1999-2005.
|