切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2015, Vol. 10 ›› Issue (02) : 169 -174. doi: 10.3877/cma.j.issn.1673-9450.2015.02.013

所属专题: 文献

综述

骨转移瘤发病的细胞生物学机制与细胞分子靶向治疗
雷明星1, 刘耀升1, 刘蜀彬1,()   
  1. 1. 100071 北京,解放军第三〇七医院骨科
  • 收稿日期:2015-02-21 出版日期:2015-04-01
  • 通信作者: 刘蜀彬
  • 基金资助:
    北京市科委首都临床特色课题(z131107002213052)

Cell biological mechanism of bone metastasis and cellular molecular targeted treatment

Mingxing Lei1, Yaosheng Liu1, Shubin Liu1,()   

  1. 1. Department of Orthopaedic Surgery, the 307th Hospital of People′s Liberation Army, Beijing 100071, China
  • Received:2015-02-21 Published:2015-04-01
  • Corresponding author: Shubin Liu
  • About author:
    Corresponding author: Liu Shubin, Email:
引用本文:

雷明星, 刘耀升, 刘蜀彬. 骨转移瘤发病的细胞生物学机制与细胞分子靶向治疗[J/OL]. 中华损伤与修复杂志(电子版), 2015, 10(02): 169-174.

Mingxing Lei, Yaosheng Liu, Shubin Liu. Cell biological mechanism of bone metastasis and cellular molecular targeted treatment[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2015, 10(02): 169-174.

骨骼是实体肿瘤转移最常见的部位。骨转移瘤目前不可治愈,发病率高,可以导致一系列骨相关事件,显著降低患者的生活质量,加重患者家庭的经济负担。肿瘤细胞转移至骨骼的生物学机制正处于研究之中,这些机制包括成骨细胞"双重"调节与骨保护素-核因子-κB受体活化因子配体-核因子-κB受体活化因子系统、肿瘤细胞和骨骼微环境中细胞产生的各种细胞因子激活破骨细胞以及相关分子的作用,例如甲状旁腺激素相关蛋白(PTHrP)介导"恶性循环"。一些具有吸引力的分子或者通路已经成为治疗骨转移瘤的新潜在性靶点,例如核因子-κB受体活化因子配体(RANKL)、组织蛋白酶K、PTHrP以及Wnt信号通路等。本综述主要阐述正常骨骼生物学、骨转移瘤骨骼生物学机制以及细胞分子靶向治疗的临床进展。这些治疗制剂包括二磷酸盐、迪诺塞麦(RANKL抑制剂)和奥当卡替(组织蛋白酶K抑制剂)。更好地理解骨转移瘤发病的生物学机制和发展更有效的靶向制剂,将有希望延长患者的生存期以及提高患者的生活质量。

Bone is the most common site of metastases in patients with solid tumor. Currently, bone metastases are virtually incurable and have high incidence. They can lead to a series of skeletal-related events, thus negatively impacting on the patients′ quality of life and burdening patients′ family financial problems. Biological mechanisms leading to metastases of tumor cells to bone are being studied. Among these are the osteoblast double regulation and osteoprotegerin-receptor activator of nuclear factor-κB ligand-receptor activator of nuclear factor-κB system, osteoclast activation via cytokines which produced by tumor cell and cells in the bone microenvironment as well as the roles of some molecules, such as parathyroid hormone related protein (PTHrP)-mediated vicious cycle. Several attractive molecules or pathways have been identified as new potential therapeutic targets for bone metastases, such as receptor activator of nuclear factor-κB ligand (RANKL), Cathepsin K, PTHrP and Wnt signaling. This review mainly present normal bone biology, metastatic tumor bone biology and the recent clinical advances in cell and molecular targeted therapeutic agents for bone metastases, including bisphosphonates, denosumab-RANKL inhibitor and odanacatib-cathepsin K inhibitor. Hopefully, with better understanding of the biology of the disease and the development of more robust targeted therapeutic drugs, the survival and quality of life of the affected individuals could be significantly improved.

图1 正常骨骼生物学
图2 骨转移瘤生物学与"恶性循环"
表1 食品药品监督管理局批准治疗骨转移瘤制剂的使用指南
33
Le Gall C, Bellahcène A, Bonnelye E, et al. A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden[J]. Cancer Res, 2007, 67(20): 9894-9902.
34
Jensen AB, Wynne C, Ramirez G, et al. The cathepsin K inhibitor odanacatib suppresses bone resorption in women with breast cancer and established bone metastases: Results of a 4-week, double-blind, randomized, controlled trial[J]. Clin Breast Cancer, 2010, 10(6): 452-458.
35
Ondoua A, Rodriquez J, Hanlon K, et al. Multivalent cathepsin inhibitor, VBY-825, attenuates breast-cancer induced bone remodeling and pain[J]. J Pain, 2012, 13(4): S43.
36
Gallwitz WE, Guise TA, Mundy GR. Guanosine nucleotides inhibit different syndromes of PTHrP excess caused by human cancers in vivo[J]. J Clin Invest, 2002, 110(10): 1559-1572.
37
Leow PC, Tian Q, Ong ZY, et al. Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/β-catenin antagonists against human osteosarcoma cells[J]. Invest New Drugs, 2010, 28(6): 766-782.
38
Chen QY, Zheng Y, Jiao DM, et al. Curumin inhibits lung cancer cell migration and invasion through Rac1-dependent signaling pathway[J]. J Nutr Biochem, 2014, 25(2): 177-185.
1
Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity[J]. Clin Cancer Res, 2006, 12(20 Pt 2): 6243s-6249s.
2
Rosen LS, Gordon D, Tchekmedyian S, et al. Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: a phase III, double-blind, randomized trial-The Zoledronic Acid Lung Cancer and Other Solid Tumors Study Group[J]. J Clin Oncol, 2003, 21(16): 3150-3157.
3
Delea TE, McKiernan J, Brandman J, et al. Impact of skeletal complications on total medical care costs among patients with bone metastases of lung cancer[J]. J Thorac Oncol, 2006, 1(6): 571-576.
4
Delea TE, McKiernan J, Brandman J, et al. Retrospective study of the effect of skeletal complications on total medical care costs in patients with bone metastases of breast cancer seen in typical clinical practice[J]. J Support Oncol, 2006, 4(7): 341-347.
5
Delank KS, Wendtner C, Eich HT, et al. The treatment of spinal metastases[J]. Dtsch Arzt Int, 2011, 108(5): 71-80.
6
Hsu H, Lacey DL, Dunstan CR, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand[J]. Proc Natl Acad Sci USA, 1999, 96(7): 3540-3545.
7
Roodman GD. Mechanisms of bone metastasis[J]. N Engl J Med, 2004, 350(16): 1655-1664.
8
Nguyen DX, Chiang AC, Zhang XH-F, et al. WNT/TCF signaling through LEF1 and HOXB 9 mediates lung adenocarcinoma metastasis[J]. Cell, 2009, 138(1): 51-62.
9
Bromme D, Okamoto K, Wang BB, et al. Human cathepsin O2, a matrix protein-degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin O2 in Spodoptera frugiperda and characterization of the enzyme[J]. J Biol Chem, 1996, 271(4): 2126-2132.
10
Gamero P, Borel O, Byrjalsen I, et al. The collagenolytic activity of cathepsin K is unique among mammalian proteinases[J]. J Biol Chem, 1998, 273(48): 32347-32352.
11
Wilson SR, Peters C, Saftig P, et al. Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption[J]. J Biol Chem, 2009, 284(4): 2584-2592.
12
Maeda T, Alexander CM, Friedl A. Induction of syndecan-1 expression in stromal fibroblasts promotes proliferation of human breast cancer cells[J]. Cancer Res, 2004, 64(2): 612-621.
13
Powle T, Paterson S, Kanis JA, et al. Randomized, placebo-controlled trial of clodronate in patients with primary operable breast cancer[J]. J Clin Oncol, 2002, 20(15): 3219-3224.
14
Bussard KM, Gay CV, Mastro AM. The bone microenvironment in metastasis; what is special about bone[J]. Cancer Metastasis Rev, 2008, 27(1): 41-55.
15
Thomas RJ, Guise TA, Yin JJ, et al. Breast cancer cells interact with osteoblasts to support osteoclast formation[J]. Endocrinology, 1999, 140(10): 4451-4458.
16
Guise TA, Yin JJ, Taylor SD, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis[J]. J Clin Invest, 1996, 98(7): 1544-1549.
17
Yoneda T, Hiraga T. Crosstalk between cancer cells and bone microenvironment in bone metastasis[J]. Biochem Biophys Res Commun, 2005, 328(3): 679-687.
18
Fleisch H. Development of bisphosphonates[J]. Breast Cancer Res, 2002, 4(1): 30-34.
19
Green J, Clézardin P. The molecular basis of bisphosphonate activity: a preclinical perspective[J]. Semin Oncol, 2010, 37 Suppl 1: S3-S11.
20
Rosen L, Harland SJ, Osterlinck W. Broad clinical activity of zoledronic acid in osteolytic to osteoblastic bone lesions in patients with a broad range of solid tumors[J]. Am J Clin Oncol, 2002, 25(6 Suppl 1): S19-S24.
21
Pavlakis N, Schmidt R, Stockler M. Bisphosphonates for breast cancer[J]. Cochrane Database Syst Rev, 2005, (3): CD003474.
22
Rosen LS, Gordon DH, Kaminski M, et al. Long-term ef?cacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter comparative trial[J]. Cancer, 2003, 98(8): 1735-1744.
23
Rosen LS, Gordon DH, Dugan W Jr, et al. Zoledronic acid is superior to pamidronate for the treatment of bone metastases in breast carcinoma patients with at least one osteolytic lesion[J]. Cancer, 2004, 100(1): 36-43.
24
Filleul O, Crompot E, Saussez S. Bisphosphonate-induced osteonecrosis of the jaw: a review of 2, 400 patient cases[J]. J Cancer Res Clin Oncol, 2010, 136(8): 1117-1124.
25
Palaska PK, Cartsos V, Zavras AI. Bisphosphonates and time to osteonecrosis development[J]. Oncologist, 2009, 14(11): 1154-1166.
26
Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study[J]. Lancet, 2011, 377(9768): 813-822.
27
Stopeck AT, Lipton A, Body JJ, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study[J]. J Clin Oncol, 2010, 28(35): 5132-5139.
28
Henry DH, Costa L, Goldwasser F, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma[J]. J Clin Oncol, 2011, 29(9): 1125-1132.
29
Lipton A, Fizazi K, Stopeck A. Effect of denosumab versus zoledronic acid (ZA) in preventing skeletal-related events (SREs) in patients with metastatic bone disease: Subgroup analyses by baseline characteristics[J]. J of Clin Oncol, 2014, 32(15 suppl 1).
30
ScagliottiGV, Hirsh V, Siena S, et al. Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: subgroup analysis from a randomized phase 3 study[J]. J Thorac Oncol, 2012, 7(12): 1823-1829.
39
Busch AM, Johnson KC, Stan RV, et al. Evidence for tankyrases as antineoplastic targets in lung cancer[J]. BMC Cancer, 2013, 13: 211.
40
Lau T, Chan E, Callow M, et al. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth[J]. Cancer Res, 2013, 73(10): 3132-3144.
31
Fizazi K, Coleman R, Klotz L, et al. Prevention of symptomatic skeletal events in patients with genitourinary (GU) tumors and bone metastases treated with denosumab or zoledronic acid[J]. Eur Urol Suppl, 2014, 13(1): e869.
32
Kawatani M, Osada H. Osteoclast-targeting small molecules for the treatment of neoplastic bone metastases[J]. Cancer Sci, 2009, 100(11): 1999-2005.
[1] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[2] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[5] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[6] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[7] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[8] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[9] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[10] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[13] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[14] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[15] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
阅读次数
全文


摘要