切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2017, Vol. 12 ›› Issue (04) : 306 -308. doi: 10.3877/cma.j.issn.1673-9450.2017.04.013

所属专题: 文献

综述

医用可降解形状记忆聚合物研究进展
邱超1, 周潘宇1, 许硕贵1,()   
  1. 1. 200433 上海,第二军医大学附属长海医院急诊科
  • 收稿日期:2017-02-19 出版日期:2017-08-01
  • 通信作者: 许硕贵
  • 基金资助:
    国家自然科学基金(81601910,81171794); 中国博士后科学基金(2016M592936)

Advances in the research of medical degradable shape memory polymers

Chao Qiu1, Panyu Zhou1, Shuogui Xu1,()   

  1. 1. Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
  • Received:2017-02-19 Published:2017-08-01
  • Corresponding author: Shuogui Xu
  • About author:
    Corresponding author: Xu Shuogui, Email:
引用本文:

邱超, 周潘宇, 许硕贵. 医用可降解形状记忆聚合物研究进展[J]. 中华损伤与修复杂志(电子版), 2017, 12(04): 306-308.

Chao Qiu, Panyu Zhou, Shuogui Xu. Advances in the research of medical degradable shape memory polymers[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2017, 12(04): 306-308.

形状记忆聚合物(SMP)是一种智能的高分子材料,因其良好的生物相容性、独特的形状记忆效应、可调控范围大、体内可降解性等一系列优点,引起材料界的兴趣与研究,被广泛运用于生物医学等领域。本篇综述主要归纳了SMP在医学领域的最新进展,并在此基础上对SMP的未来前景进行了展望。

The shape memory polymer (SMP) is a kind of intelligent polymer materials. Because of its good biocompatibility, unique shape memory effect, large adjustable range, degradable in vivo and so on, it has attracted much interest and research in the field of materials, and has been widely used in biomedical fields. This review mainly summarizes the latest progress of SMP in the field of medicine, and on this basis, the future prospects of SMP are prospected.

1
Chan BQY, Zhi WKL, Heng SJW, et al. Recent Advances in Shape Memory Soft Materials for Biomedical Applications[J]. ACS Appl Mater Interfaces, 2016, 8(16):10070-10087.
2
郑晓彤,周绍兵. 可降解形状记忆高分子复合材料的研究进展[J]. 中国医疗器械信息,2009, 15(5):11-17.
3
陆兵,王倡春,徐江,等. 形状记忆高分子材料的研究进展[J]. 中国科技纵横,2014,(22):288.
4
Lendlein A, Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications[J]. Science, 2002, 296(5573):1673-1676.
5
Cha KJ, Lih E, Choi J, et al. Shape-memory effect by specific biodegradable polymer blending for biomedical applications[J]. Macromol Biosci, 2014, 14(5):667-678.
6
Lendlein A, Behl M, Hiebl B, et al. Shape-memory polymers as a technology platform for biomedical applications[J]. Expert Rev Med Devices, 2010, 7(3):357-379.
7
Bertmer M, Buda A, Blomenkamp-Hofges I, et al. Biodegradable Shape-Memory Polymer Networks: Characterization With Solid-State Nmr[J]. Macromolecules, 2005, 38(9):3793-3799.
8
Wang W, Peng P, Chen X, et al. Polylactide-based polyurethane and its shape-memory behavior[J]. Eur Polym J, 2006, 42(6):1240-1249.
9
Murphy W, Black J, Hastings G. Handbook of Biomaterial Properties[J]. J Control Release, 1998, 65(3):629.
10
Small W 4th, Singhal P, Wilson TS, et al. Biomedical applications of thermally activated shape memory polymers[J]. J Mater Chem, 2010, 20(18):3356-3366.
11
刘青,王彭延. 国外医用缝合线的发展状况[J]. 国外医学生物医学工程分册,1993, 16(6):324-328.
12
Goraltchouk A, Lai J, Herrmann RA. Shape-Memory Self-Retaining Sutures, Methods Of Manufacture, And Methods Of Use: US, US 20110125188 A1[P]. 2011.
13
Wischke C, Neffe AT, Steuer S, et al. Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release[J]. J Control Release, 2009, 138(3):243-250.
14
Wischke C, Lendlein A. Shape-memory polymers as drug carriers-a multifunctional system[J]. Pharm Res, 2010, 27(4):527-529.
15
Singhal P, Small W, Cosgriff-Hernandez E, et al. Low density biodegradable shape memory polyurethane foams for embolic biomedical applications[J]. Acta Biomater, 2014, 10(1):67-76.
16
Rodriguez JN, Clubb FJ, Wilson TS, et al. In vivo tissue response following implantation of shape memory polyurethane foam in a porcine aneurysm model[J]. J Biomed Mater Res A, 2013, 102(5):1231-1242.
17
Jung YC, Cho JW. Application of shape memory polyurethane in orthodontic[J]. J Mater Sci Mater Med, 2010, 21(10):2881-2886.
18
Grablowitz H, Langer RS, Lendlein A, et al. Biodegradable shape memory polymers: WO 1999042147 A1[P]. 1999.
19
Zheng X, Zhou S, Li X, et al. Shape memory properties of poly(d,l-lactide)/hydroxyapatite composites[J]. Biomaterials, 2006, 27(24):4288-4295.
20
Baker RM, Tseng LF, Iannolo MT, et al. Self-deploying shape memory polymer scaffolds for grafting and stabilizing complex bone defects: A mouse femoral segmental defect study[J]. Biomaterials, 2016, 76:388-398.
21
Chen S, Hu J, Zhuo H. Properties and mechanism of two-way shape memory polyurethane composites[J]. Compos Sci Technol, 2010, 70(10):1437-1443.
[1] 姚丹, 郝岱峰, 赵帆. 可降解高分子材料在创面修复中的应用[J]. 中华损伤与修复杂志(电子版), 2017, 12(05): 382-388.
[2] 张波, 周潘宇, 邱超, 姜里强, 王斐, 许硕贵. 医用可降解锌合金材料抗菌性能及细胞相容性的体外实验研究[J]. 中华损伤与修复杂志(电子版), 2016, 11(03): 191-197.
[3] 王睿瑾, 张嘉琪, 衣颖杰, 吴国锋. 牙科可切削聚醚醚酮表面抛光性能的初步研究[J]. 中华口腔医学研究杂志(电子版), 2021, 15(05): 278-283.
[4] 邵小夕, 王祥, 许方方, 戴太强, 刘斌, 刘彦普. 可降解骨折内固定物研究进展[J]. 中华口腔医学研究杂志(电子版), 2018, 12(05): 317-321.
[5] 黄紫华, 孙秋榕, 陈慧敏, 王若旬, 麦穗. 羧甲基壳聚糖稳定液相矿化前体诱导胶原纤维仿生矿化[J]. 中华口腔医学研究杂志(电子版), 2017, 11(03): 136-141.
[6] 孙玥, 罗恩, 纪焕中, 陈贵征, 龚涛, 刘显. 形状记忆可吸收支架的制备及其在骨组织应用的体外研究[J]. 中华口腔医学研究杂志(电子版), 2016, 10(04): 244-249.
[7] 李帛, 武国军, 李振宇, 袁建林, 孟平, 杨力军, 王福利, 刘飞. 输尿管支架在恶性肿瘤引起的输尿管梗阻治疗中的应用新进展[J]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(04): 316-320.
[8] 李宇罡, 杨栋, 王磊, 吕俊远, 于丹, 辛世杰. 可降解镁支架对移植静脉吻合口再狭窄内膜增生及内皮化的影响[J]. 中华临床医师杂志(电子版), 2017, 11(11): 1881-1885.
[9] 曾嘉, 何东风. 介入栓塞材料在肝癌治疗中的研究进展[J]. 中华介入放射学电子杂志, 2023, 11(01): 62-67.
[10] 孔令华, 贺迎坤, 李天晓, 张一林, 何艳艳, 朱世杰, 关绍康. 镁基合金生物可降解支架的国内外研究进展[J]. 中华介入放射学电子杂志, 2020, 08(01): 83-88.
[11] 王宇飞, 郭占林. 可吸收肋骨内固定装置的研究现状[J]. 中华胸部外科电子杂志, 2018, 05(01): 47-52.
阅读次数
全文


摘要