切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2017, Vol. 12 ›› Issue (05) : 321 -325. doi: 10.3877/cma.j.issn.1673-9450.2017.05.001

所属专题: 文献

专家述评

丙酮酸钠在危重病液体治疗中的潜在应用
周方强1,(), 刘锐2   
  1. 1. 60008 美国芝加哥费森尤斯透析中心
    2. 150040 哈尔滨,黑龙江省医院烧伤科
  • 收稿日期:2017-07-05 出版日期:2017-10-01
  • 通信作者: 周方强
  • 基金资助:
    黑龙江省青年科学基金(QC2016101); 黑龙江省卫生计生委科研课题(2016-233, 2017-580)

Potential applications of pyruvate in fluid therapy of critical illness

Fangqiang Zhou1,(), Rui Liu2   

  1. 1. Dialysis Center, Fresenius Medical Care at Chicago of America, Chicago, IL 60008, America
    2. Department of Burns, Heilongjiang Provincial Hospital, Harbin 150040, China
  • Received:2017-07-05 Published:2017-10-01
  • Corresponding author: Fangqiang Zhou
  • About author:
    Corresponding author: Zhou Fangqiang, Email:
引用本文:

周方强, 刘锐. 丙酮酸钠在危重病液体治疗中的潜在应用[J]. 中华损伤与修复杂志(电子版), 2017, 12(05): 321-325.

Fangqiang Zhou, Rui Liu. Potential applications of pyruvate in fluid therapy of critical illness[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2017, 12(05): 321-325.

众多动物实验论证了丙酮酸根离子具有临床常用输液中阴离子所没有的优异生物学特性,包括提高细胞缺氧耐受性、抗氧化与抗炎作用,纠正缺氧型乳酸性酸中毒及保护线粒体功能等。因此,适用于危重病的液体治疗:既避免常规液体的"复苏损伤"毒性,如0.9%氯化钠溶液导致的高氯性酸中毒和乳酸钠溶液所致的糖酵解抑制,以及二者的炎症反应等,又在扩容同时防治多器官功能衰竭,特别是保护肠道屏障功能,表明其优越性。反复动物体内实验和初步的临床试验已显示其保护器官功能和改善氧化代谢的作用,尤其是有效纠正缺氧型乳酸性酸中毒。它能在无氧或缺氧下经乳酸脱氢酶还原反应和刺激缺氧诱导因子-1α活性,保护糖酵解代谢;在缺氧下逆转受抑制的丙酮酸脱氢酶活性,促进糖的氧化代谢,加速堆积的乳酸氧化清除。无论经静脉、腹腔和口服液体复苏,丙酮酸钠溶液都能在致死性休克动物的液体治疗中发挥以上功能。本文重点讨论以上给药途径的作用。此外,它还有防治糖尿病器官并发症,如视网膜病变和一定条件下的抗肿瘤活性,显示其重大的潜在的临床应用价值和良好前景,值得深入关注。

Numerous animal studies have demonstrated that pyruvate holds superior biological properties relative to anions in traditional solutions in fluid therapy for critical illness. The beneficial characteristics include increase of hypoxia tolerance, anti-oxidative and inflammatory effects, correction of hypoxic lactic acidosis and protection of mitochondrial function. Therefore, pyruvate-enriched solutions are potentially suitable for fluids resuscitation in critical care patients to prevent "resuscitation injury" induced by traditional fluid. For example, 0.9% sodium chloride solution commonly induces hyperchloremic acidosis, sodium lactate solution may inhibit glycolysis and both can lead to systemic inflammatory reactions in clinical fluid therapy. Pyruvate in fluid therapy is not only a volume expander, but also a therapeutic agent in prevention of multi-organ, particularly intestinal barrier, dysfunction. Thus, pyruvate appears its superiority in fluid therapy. Many animal experiments in vivo and preliminary clinical trials have demonstrated that pyruvate protects organ function and improves oxidative metabolism, specially corrects hypoxic lactic acidosis. It protects glycolytic metabolism under hypoxia, even anoxia, through lactate dehydrogenase reaction and stimulation of hypoxia inducible factor-1α; it also promotes glucose oxidative metabolism under hypoxia due to its restoration of inhibited activity of pyruvate dehydrogenase, resulting in improvement of lactic clearance. The pyruvate favorable function can be achieved by intravenous, peritoneal or oral administrations in fluid therapy of fatal shock animals. These aspects were mainly reviewed in this paper. In addition, pyruvate prevents organ complications associated with diabetes, such as retinopathy, and shows anti-cancer property under some conditions. Current findings strongly demonstrate its huge potential values and promising prospects in clinical application. Further concerns and investigations are warranted.

1
Mongan PD,Fontana JL,Chen R, et al. Intravenous pyruvate prolongs survival during hemorrhagic shock in swine[J]. Am J Physiol, 1999, 277(6 Pt 2): H2253-H2263.
2
Flaherty DC,Hoxha B,Sun J, et al. Pyruvate-fortified fluid resuscitation improves hemodynamic stability while suppressing systemic inflammation and myocardial oxidative stress after hemorrhagic shock[J]. Mil Med, 2010, 175(3): 166-172.
3
韩晓春,胡森,刘先奇, 等. 丙酮酸钠液对烫伤休克大鼠肾血管通透性的影响[J]. 中国医学工程, 2011, 19(4): 4-6.
4
Hu S,Bai XD,Liu XQ, et al. Pyruvate Ringer′s solution corrects lactic acidosis and prolongs survival during hemorrhagic shock in rats[J]. J Emerg Med, 2013, 45(6): 885-893.
5
Mongan PD,Capacchione J,Fontana JL, et al. Pyruvate improves cerebral metabolism during hemorrhagic shock[J]. Am J Physiol Heart Circ Physiol, 2001, 281(2): H854-H864.
6
Moro N,Ghavim SS,Harris NG, et al. Pyruvate treatment attenuates cerebral metabolic depression and neuronal loss after experimental traumatic brain injury[J]. Brain Res, 2016, 1642: 270-277.
7
Cherry BH,Nguyen AQ,Hollrah RA, et al. Pyruvate stabilizes electrocardiographic and hemodynamic function in pigs recovering from cardiac arrest[J]. Exp Biol Med (Maywood), 2015, 240(12): 1774-1784.
8
Liu R,Wang SM,Liu XQ, et al. Pyruvate alleviates lipid peroxidation and multiple-organ dysfunction in rats with hemorrhagic shock[J]. Am J Emerg Med, 2016, 34(3): 525-530.
9
McCague A,Bowman N,Wong DT. Lactic acidosis after resuscitation with sodium acetate[J]. J Surg Res, 2012, 173(2): 362-364.
10
周方强. 丙酮酸钠的治疗作用和液体治疗溶液改进的探讨[G]. 全国新药研发与技术评审及注册管理研讨会会议论文集,成都,2010: 133-143.
11
Gou D,Tan H,Cai H, et al. Pyruvate effects on red blood cells during in vitro cardiopulmonary bypass with dogs′ blood[J]. Artif Organs, 2012, 36(11): 988-991.
12
高明娟,刘维维,王哓娜, 等. 丙酮酸钠羟乙基淀粉对50%总体表面积Ⅲ度烧伤大鼠肾血流量和肾功能的影响[J/CD]. 中华损伤和修复杂志(电子版), 2015, 10(5): 388-394.
13
Zakaria el R,Hurt RT,Matheson PJ, et al. A novel method of peritoneal resuscitation improves organ perfusion after hemorrhagic shock[J]. Am J Surg, 2003, 186(5): 443-448.
14
Weaver JL,Matheson PJ,Hurt RT, et al. Direct peritoneal resuscitation alters hepatic miRNA expression after hemorrhagic shock[J]. J Am Coll Surg, 2016, 223(1): 68-75.
15
Zhou FQ. Advantages of pyruvate over lactate in peritoneal dialysis solutions[J]. Acta Pharmacol Sin, 2001, 22(5): 385-392.
16
Lu XG,Kang X,Zhou FQ, et al. Effects of pyruvate-enriched peritoneal dialysis solution on intestinal barrier in peritoneal resuscitation from hemorrhagic shock in rats[J]. J Surg Res, 2015, 193(1): 368-376.
17
Hu S,Ma L,Luo HM, et al. Pyruvate is superior to reverse visceral hypoperfusion in peritoneal resuscitation from hemorrhagic shock in rats[J]. Shock, 2014, 41(4): 355-361.
18
Rao MC. Oral rehydration therapy: new explanations for an old remedy[J]. Annu Rev Physiol, 2004, 66: 385-417.
19
Vyas KS,Wong LK. Oral rehydration solutions for burn management in the field and underdeveloped regions: a review[J]. Int J Burns Trauma, 2013, 3(3): 130-136.
20
Pham TN,Cancio LC,Gibran NS, American Burn Association. American Burn Association practice guidelines burn shock resuscitation[J]. J Burn Care Res, 2008, 29(1): 257-266.
21
Milner SM,Greenough WB 3rd,Asuku ME, et al. From cholera to burns: a role for oral rehydration therapy[J]. J Health Popul Nutr, 2011, 29(6): 648-651.
22
Hu S,Liu WW,Zhao Y, et al. Pyruvate-enriched oral rehydration solution improved intestinal absorption of water and sodium during enteral resuscitation in burns[J]. Burns, 2014, 40(4): 693-701.
23
Liu R,Hu XH,Wang SM, et al. Pyruvate in oral rehydration salt improves hemodynamics, vasopermeability and survival after burns in dogs[J]. Burns, 2016, 42(4): 797-806.
24
刘锐,李宗瑜,王树明, 等. 低渗丙酮酸钠口服补液盐对严重烧伤大鼠血流动力学、组织灌注水平及存活率的影响[J/CD]. 中华损伤与修复杂志(电子版), 2017, 12(4): 262-268.
25
Olenchock BA,Vander Heiden MG. Pyruvate as a pivot point for oncogene-induced senescence[J]. Cell, 2013, 153(7): 1429-1430.
26
Sharma P,Benford B,Li ZZ, et al. Role of pyruvate dehydrogenase complex in traumatic brain injury and Measurement of pyruvate dehydrogenase enzyme by dipstick test[J]. J Emerg Trauma Shock, 2009, 2(2): 67-72.
27
Zhou FQ. Pyruvate in the correction of intracellular acidosis: a metabolic basis as a novel superior buffer[J]. Am J Nephrol, 2005, 25(1): 55-63.
28
Hu S,Lin ZL,Zhao ZK, et al. Pyruvate is superior to citrate in oral rehydration solution in the protection of intestine via hypoxia-inducible factor-1 activation in rats with burn injury[J]. JPEN J Parenter Enteral Nutr, 2016, 40(7): 924-933.
29
张元芳,吴肇光,周方强. 丙酮酸钠在缺氧型乳酸性酸中毒中的潜在临床应用[J]. 中华医学杂志, 2015, 95(12): 958-960.
30
齐艳秀,符俊达,王玉清, 等. 丙酮酸对糖尿病大鼠视网膜氧化损伤及超微结构的影响[J]. 国际眼科杂志, 2014, 14(12): 2143-2146.
31
Koivisto H,Leinonen H,Puurula M, et al. Chronic pyruvate supplementation increases exploratory activity and brain energy reserves in young and middle-aged mice[J]. Front Aging Neurosci, 2016, 8: 41.
32
Wang X,Hu X,Yang Y, et al. Systemic pyruvate administration markedly reduces neuronal death and cognitive impairment in a rat model of Alzheimer′s disease[J]. Exp Neurol, 2015, 271: 145-154.
33
Wojtkowiak JW,Cornnell HC,Matsumoto S, et al. Pyruvate sensitizes pancreatic tumors to hypoxia-activated prodrug TH-302[J]. Cancer Metab, 2015, 3(1): 2.
34
Schillinger W,Hünlich M,Sossalla S, et al. Intracoronary pyruvate in cardiogenic shock as an adjunctive therapy to catecholamines and intra-aortic balloon pump shows beneficial effects on hemodynamics[J]. Clin Res Cardiol, 2011, 100(5): 433-438.
35
Koga Y,Povalko N,Katayama K, et al. Beneficial effect of pyruvate therapy on Leigh syndrome due to a novel mutation in PDH E1α gene[J]. Brain Dev, 2012, 34(2): 87-91.
36
Van Erven PM,Gabreëls FJ,Wevers RA, et al. Intravenous pyruvate loading test in Leigh syndrome[J]. J Neurol Sci, 1987, 77(2/3): 217-227.
[1] 季春莲, 孟建标, 沈莹, 张微, 庞丽莎, 徐敏荣. 奥氮平治疗ICU内谵妄患者的疗效分析[J]. 中华危重症医学杂志(电子版), 2021, 14(02): 146-148.
[2] 徐蓉, 刘军. ICU滞留患者的临床特征及预后分析[J]. 中华危重症医学杂志(电子版), 2021, 14(02): 137-141.
[3] 王倩, 赵阳, 臧彬. 氟哌啶醇预防危重症患者谵妄发生的Meta分析[J]. 中华危重症医学杂志(电子版), 2020, 13(03): 200-206.
[4] 陈利婷, 刘慧苹, 宋忠瑞, 徐尚, 郭玉秀, 舒桂华. 改良振幅整合脑电图评分联合血清神经元特异性烯醇化酶水平对新生儿胆红素脑损伤的早期预测价值[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(04): 430-437.
[5] 耿莉莉, 周国勇, 李娟, 刘虎仙, 孙可, 孙永华, 曾丁. 丙酮酸盐对重要脏器缺氧性损伤作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2020, 15(06): 499-501.
[6] 孙永华, 周方强, 胡森. 丙酮酸钠口服补液盐用于治疗新型冠状病毒肺炎的建议[J]. 中华损伤与修复杂志(电子版), 2020, 15(03): 166-169.
[7] 顾竹劼, 胡双双, 师小伟, 马钰, 陆敏敏, 汪建胜. 老年肝癌合并肝硬化患者围手术期不同液体管理在腹腔镜肝切除术中的对比研究[J]. 中华普通外科学文献(电子版), 2022, 16(03): 199-204.
[8] 郝志强, 阮骊韬, 李孟彬, 王为忠, 张洪伟. 丙酮酸对大鼠移植小肠黏膜组织超氧化物歧化酶活力的影响[J]. 中华普通外科学文献(电子版), 2021, 15(05): 360-363.
[9] 肖丽丽, 任江, 明燕, 罗恒, 张俊杰. 急诊危重病患者气管插管中弹性插管内芯的临床效果分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 888-889.
[10] 杨晓, 胡波. 危重症患者营养风险筛查:因病制宜,因人而异[J]. 中华重症医学电子杂志, 2022, 08(04): 321-325.
[11] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[12] 王晓娜, 白桂芹. 体外膜肺氧合技术在重症孕产妇救治中的应用[J]. 中华产科急救电子杂志, 2022, 11(02): 81-87.
[13] 赵建荣, 蔡倩, 李海燕, 彭干成, 李紫芹. 重症及危重症甲型H1N1流感病毒性肺炎患者临床诊断学特征分析[J]. 中华诊断学电子杂志, 2020, 08(04): 253-257.
[14] 吴晶晶, 孙明, 吴超, 周陈, 王雪山, 陈德广. 床旁彩超定位在危急患者困难颈内静脉置管中的应用[J]. 中华卫生应急电子杂志, 2020, 06(06): 337-339.
[15] 何玉峰. 神经元特异性烯醇化酶对颅脑损伤患者神经功能预后的评估价值[J]. 中华卫生应急电子杂志, 2019, 05(06): 348-350.
阅读次数
全文


摘要