切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2017, Vol. 12 ›› Issue (05) : 326 -330. doi: 10.3877/cma.j.issn.1673-9450.2017.05.002

所属专题: 文献

论著

低渗丙酮酸钠口服补液盐对大鼠窒息性心脏停搏复苏后脑损伤的影响
白卫平1, 李娟1, 韩瑞丽1, 顾颖1, 孙绪德1, 叶菁2, 周方强3, 高昌俊1,()   
  1. 1. 710038 西安,空军军医大学唐都医院麻醉科
    2. 710038 西安,空军军医大学病理学教研室
    3. 201203 上海三代医药科技有限公司
  • 收稿日期:2017-08-18 出版日期:2017-10-01
  • 通信作者: 高昌俊
  • 基金资助:
    国家自然科学基金(81571183)

Effects of hypotonic pyruvate oral rehydration solution on brain injury in rats subjected to asphyxial cardiac arrest

Weiping Bai1, Juan Li1, Ruili Han1, Ying Gu1, Xude Sun1, Jing Ye2, Fangqiang Zhou3, Changjun Gao1,()   

  1. 1. Department of Anesthesiology, Tangdu Hospital, Air Force Military Medical University, Xi′an 710038, China
    2. Department of Pathology, Air Force Military Medical University, Xi′an 710038, China
    3. Shanghai Sandai Phamaceutical R&DCo, Ltd, Pu′dong 201203, China
  • Received:2017-08-18 Published:2017-10-01
  • Corresponding author: Changjun Gao
  • About author:
    Corresponding auther: Gao Changjun, Email:
引用本文:

白卫平, 李娟, 韩瑞丽, 顾颖, 孙绪德, 叶菁, 周方强, 高昌俊. 低渗丙酮酸钠口服补液盐对大鼠窒息性心脏停搏复苏后脑损伤的影响[J/OL]. 中华损伤与修复杂志(电子版), 2017, 12(05): 326-330.

Weiping Bai, Juan Li, Ruili Han, Ying Gu, Xude Sun, Jing Ye, Fangqiang Zhou, Changjun Gao. Effects of hypotonic pyruvate oral rehydration solution on brain injury in rats subjected to asphyxial cardiac arrest[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2017, 12(05): 326-330.

目的

探讨低渗丙酮酸钠口服补液盐对大鼠窒息性心脏停搏复苏后脑损伤的影响。

方法

清洁级雄性SD大鼠,体重300~350 g,按照随机数字表法分为3组:假手术组(S组,n=8)、窒息性心脏停搏复苏+实验用水组(C组,n=12)和窒息性心脏停搏复苏+低渗丙酮酸钠口服补液盐组(P组,n=12)。P组于大鼠复苏后30 min经口胃管置入法灌注37 ℃低渗丙酮酸钠口服补液盐12 mL(3 mL/次,每间隔30 min灌注1次),随后拔除胃管放回笼中,首日以低渗丙酮酸钠口服补液盐自由饮用。C组于大鼠复苏后30 min用同样的方法灌注等量的实验用水,随后拔除胃管放回笼中,自由饮用实验用水。S组不诱导窒息性心脏停搏及心肺复苏。复苏后24 h取大脑额叶皮层组织测丙酮酸含量。复苏后24、72 h和复苏后7 d时行神经功能缺损评分。复苏后4~7 d进行Morris水迷宫实验检测空间学习记忆能力。复苏后7 d观察海马CA1区神经元存活情况。

结果

与S组比较,C组脑组织丙酮酸含量降低,而P组的含量显著增高;C组和P组各时间点神经缺损评分与海马CA1区存活神经元数量降低,水迷宫实验显示逃避潜伏期延长、平台所在象限进入百分比和平台象限停留时间百分比都降低,差异均有统计学意义(P值均小于0.05)。但与C组比较,P组各时间点神经缺损评分与海马CA1区存活神经元数量升高;逃避潜伏期缩短、平台所在象限进入百分比和平台象限停留时间百分比都明显升高,差异均有统计学意义(P值均小于0.05)。

结论

低渗丙酮酸钠口服补液盐可以减轻大鼠窒息性心脏停博复苏后脑损伤。

Objective

To investigate the effect of hypotonic pyruvate oral rehydration solution on brain injury subjected asphyxial cardiac arrest in rats.

Methods

Clean male SD rats, weighing 300-350 g, were divided into 3 groups according to random number table method: sham operation group (group S, n=8), asphyxial cardiac arrest recovery plus experimental water group (group C, n=12) and asphyxial cardiac arrest recovery plus hypotonic pyruvate oral rehydration solution group (group P, n=12). At 30 min after the restoration of spontaneous circulation, group P was gastrically injected through gavage of pyruvate oral rehydration solution 12 mL, instead of experimental water in group C(3 mL at 30 min intervals), then drinking pyruvate oral rehydration solution to replace experimental water in the first day. While rats in group S were not induced asphyxial cardiac arrest and cardiopulmonary resuscitation. Pyruvate levels of brain frontal cortex was measured at 24 h after restoration of spontaneous circulation. The scores of neurological deficits were evaluated 24 h, 72 h and 7 d following the cardiac arrest restoration. The water maze tests used to evaluate spatial learning and memory deficit were recorded 4-7 d post-restoration of spontaneous circulation. Morphological changes of neurons in the hippocampal CA1 region were observed on 7 d after the cardiac arrest recovery.

Results

Compared with group S, brain pyruvate levels in group C were decreased, but greatly increased in group P, in groups C and P, the neurological deficit score and the number of viable neurons in hippocampal CA1 region were reduced, the escape latency was prolonged, and the platform quadrant enter time percentage and the target quadrant residence time percentage were decreased at each time point, the differences were statistically significant(with P values below 0.05). However, compared with group C, in group P with increased pyruvate in the brain tissue, the score of nerve defect and the number of survival neurons in hippocampal CA1 region were significantly improved, the escape latency was shortened, and the two percentages of the platform quadrant were also preserved at each time point, the differences were statistically significant(with P values below 0.05).

Conclusion

Oral hypotonic pyruvate oral rehydration solution relieved the brain damage after asphyxial cardiac arrest in rats.

表1 大鼠脑组织丙酮酸含量与存活神经元计数(±s)
表2 大鼠复苏后不同时间点神经缺损功能评分(n=5, ±s)
表3 大鼠Morris水迷宫实验结果(n=5,±s)
1
Go AS,Mozaffarian D,Roger VL, et al. Executive summary: heart disease and stroke statistics--2013 update: a report from the American Heart Association[J]. Circulation, 2013, 127(1): 143-152.
2
Cherry BH,Nguyen AQ,Hollrah RA, et al. Pyruvate stabilizes electrocardiographic and hemodynamic function in pigs recovering from cardiac arrest[J]. Exp Biol Med (Maywood), 2015, 240(12): 1774-1784.
3
Sharma AB,Barlow MA,Yang SH, et al. Pyruvate enhances neurological recovery following cardiopulmonary arrest and resuscitation[J]. Resuscitation, 2008, 76(1): 108-119.
4
Pan R,Rong Z,She Y, et al. Sodium pyruvate reduces hypoxic-ischemic injury to neonatal rat brain[J]. Pediatr Res, 2012, 72(5): 479-489.
5
Moro N,Ghavim SS,Harris NG, et al. Pyruvate treatment attenuates cerebral metabolic depression and neuronal loss after experimental traumatic brain injury[J]. Brain Res, 2016, 1642: 270-277.
6
高昌俊,张贵和,孙绪德, 等. 大鼠窒息性心跳停止复苏后脑缺血损伤模型的建立[J]. 临床麻醉学杂志, 2012, 28(1): 77-80.
7
Geocadin RG,Malhotra AD,Tong S, et al. Effect of acute hypoxic preconditioning on qEEG and functional recovery after cardiac arrest in rats[J]. Brain Res, 2005, 1064(1/2): 146-154.
8
Morris R. Developments of a water-maze procedure for studying spatial learning in the rat[J]. J Neurosci Methods, 1984, 11(1): 47-60.
9
Corbett D,Nurse S. The problem of assessing effective neuroprotection in experimental cerebral ischemia[J]. Prog Neurobiol, 1998, 54(5): 531-548.
10
杨璐,赵晓勇,孙美艳, 等. CREB磷酸化蛋白水平对δ阿片受体激动剂后处理脑保护作用的影响[J]. 临床麻醉学杂志, 2013, 29(5): 484-487.
11
Scott GF,Nguyen AQ,Cherry BH, et al. Featured Article: Pyruvate preserves antiglycation defenses in porcine brain after cardiac arrest[J]. Exp Biol Med(Maywood), 2017, 242(10): 1095-1103.
12
Liu R,Wang SM,Liu XQ, et al. Pyruvate alleviates lipid peroxidation and multiple-organ dysfunction in rats with hemorrhagic shock[J]. Am J Emerg Med, 2016, 34(3): 525-530.
13
Sharma P,Benford B,Li ZZ, et al. Role of pyruvate dehydrogenase complex in traumatic brain injury and Measurement of pyruvate dehydrogenase enzyme by dipstick test[J]. J Emerg Trauma Shock, 2009, 2(2): 67-72.
14
Hu S,Bai XD,Liu XQ, et al. Pyruvate Ringer′s solution corrects lactic acidosis and prolongs survival during hemorrhagic shock in rats[J]. J Emerg Med, 2013, 45(6): 885-893.
15
Ryou MG,Liu R,Ren M, et al. Pyruvate protects the brain against ischemia-reperfusion injury by activating the erythropoietin signaling pathway[J]. Stroke, 2012, 43(4): 1101-1107.
16
Hu S,Lin ZL,Zhao ZK, et al. Pyruvate is superior to citrate in oral rehydration solution in the protection of intestine via hypoxia-inducible factor-1 activation in rats with burn injury[J]. JPEN J Parenter Enteral Nutr, 2016, 40(7): 924-933.
17
UNICEF. New formulation of oral rehydration salts (ORS) with reduced osmolarity[D]. Technical Bulletin, 2003.
18
Liu R,Hu XH,Wang SM, et al. Pyruvate in oral rehydration salt improves hemodynamics, vasopermeability and survival after burns in dogs[J]. Burns, 2016, 42(4): 797-806.
19
Olek RA,Kujach S,Wnuk D, et al. Single sodium pyruvate ingestion modifies blood acid-base status and post-exercise lactate concentration in humans[J]. Nutrients, 2014, 6(5): 1981-1992.
20
Milner SM,Greenough 3rd WB,Asuku ME, et al. From cholera to burns: a role for oral rehydration therapy[J]. J Health Popul Nutr, 2011, 29(6): 648-651.
[1] 刘思锐, 赵辰阳, 张睿, 张一休, 杨萌. 多普勒超声对孕鼠子宫动脉不同节段血流动力学参数的评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 877-883.
[2] 林琳, 田思萌, 于永华, 徐飞飞, 黄明莉. 干细胞及其外泌体治疗宫腔黏连的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 271-275.
[3] 严华悦, 刘子祥, 周少波. 磷酸烯醇式丙酮酸羧激酶-1在恶性肿瘤中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 452-456.
[4] 刘锦程, 王斌, 张雯, 张明周, 刘禹, 叶东樊, 黄赞胜, 邱凌霄, 卿斌, 王创业, 王南博, 王苹, 郭宇航, 周培花, 程秋霞, 徐智. 肺泡灌洗液RASSF1A及SHOX2甲基化联合径向超声特征对肺结节性质鉴别诊断的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 505-511.
[5] 王守森, 傅世龙, 鲜亮, 林珑. 深入理解控制性减压技术对创伤性颅脑损伤术中脑膨出的预防机制与效果[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 257-262.
[6] 吴东阳, 林向丹, 石佐林, 赵玉龙, 王振, 文安国, 纪鑫, 李俊之, 赵明光. NF-L、NLRP3、S100B 蛋白在颅脑损伤严重程度及预后评估中的应用价值[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 279-285.
[7] 罗磊, 熊建平, 郑宏伟, 王嗣嵩, 柴祥, 吴青, 潘海鹏. 静脉留置针穿刺引流治疗颅骨修补术后硬膜外积液一例报道[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 315-317.
[8] 张晟豪, 周杰, 姚鹏飞, 李长栋, 屈晓东, 南亚强, 曹丽. 雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 132-140.
[9] 从长春, 王春琳, 武孝刚, 王金标, 章福彬, 孙磊, 王李. 重型颅脑损伤患者呼吸机相关性肺炎的危险因素及病原学分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 151-157.
[10] 毛进鹏, 陶治鹤, 刘琦, 王勇, 周明安, 陈劲松, 田少斌. 保守治疗大量创伤性硬膜外血肿的体会(附10例报告)[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 164-168.
[11] 王如海, 王绅, 张敏, 李春, 韩超, 于强, 胡海成, 李习珍. 重型创伤性脑损伤患者去骨瓣减压术后短期死亡风险的影响因素分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 285-291.
[12] 司楠, 孙洪涛. 创伤性脑损伤后肾功能障碍危险因素的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 300-305.
[13] 胡志恒, 任洪波, 宋志远, 张运刚, 韩晓正. 血清sTIM-3及其配体Gal-9、CEACAM-1与创伤性颅脑损伤患者脑损伤程度及预后的关系[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 201-207.
[14] 王燕, 梁海乾, 郭姗姗. 炎症小体在创伤性脑损伤中作用的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 177-181.
[15] 陈晓胜, 何佳, 刘方, 吴蕊, 杨海涛, 樊晓寒. 直立倾斜试验诱发31 秒心脏停搏的植入心脏起搏器儿童一例并文献复习[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 488-494.
阅读次数
全文


摘要