切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2017, Vol. 12 ›› Issue (01) : 65 -68. doi: 10.3877/cma.j.issn.1673-9450.2017.07.012

所属专题: 文献

综述

骨髓基质细胞与脊髓损伤次级阶段修复的相关研究
杨新明1()   
  1. 1. 075000 张家口,河北北方学院附属第一医院骨科
  • 收稿日期:2016-10-18 出版日期:2017-02-01
  • 通信作者: 杨新明
  • 基金资助:
    河北省卫生厅2011年医学科学研究重点项目计划(20110176); 2013年度河北北方学院创新人才培育基金项目(CXRC1322)

Related research of bone marrow stromal cells and secondary stage repair of spinal cord injury

Xinming Yang1,()   

  1. 1. Department of Orthopaedics, the First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
  • Received:2016-10-18 Published:2017-02-01
  • Corresponding author: Xinming Yang
  • About author:
    Corresponding author: Yang Xinming, Email:
引用本文:

杨新明. 骨髓基质细胞与脊髓损伤次级阶段修复的相关研究[J]. 中华损伤与修复杂志(电子版), 2017, 12(01): 65-68.

Xinming Yang. Related research of bone marrow stromal cells and secondary stage repair of spinal cord injury[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2017, 12(01): 65-68.

随着对脊髓损伤机制研究的认识,次级阶段造成脊髓损害范围及程度远大于初级阶段,后者是不可逆转的原始损伤,而前者是继发的、可逆转的且可控制的生物化学反应过程,通过骨髓间充质干细胞移植可以对脊髓损伤次级阶段进行干预治疗,为临床精准治疗脊髓损伤奠定理论基础。本文现就脊髓损伤次级阶段病理生理变化,骨髓间充质干细胞在脊髓损伤治疗中的潜在能力及现阶段联合治疗成果进行简单的介绍。

With the understanding of the mechanism of spinal cord injury, spinal cord damage scope and degree of secondary phase is greater than the primary stage, the latter is irreversible original damage, while the former is secondary, reversible and can control the biochemical reaction process, through bone marrow mesenchymal stem cell transplantation for spinal cord injury between secondary stage intervention treatment, as the theoretical basis for clinical accurate treatment of spinal cord injury.In this paper, regarding the pathophysiological changes of spinal cord injury secondary stage, between bone marrow mesenchymal stem cells in treatment of spinal cord injury potential ability and the present stage combined treatment results were introduced simply.

1
王海波,杨新明,张瑛,等. 骨髓间充质干细胞移植治疗脊髓损伤的研究进展[J]. 生物骨科材料与临床研究,2012, 9(5): 16-19.
2
Yip PK, Malaspina A. Spinal cord trauma and the molecular point of no return[J]. Mol Neurodegener, 2012, 7: 6.
3
Kumagai G, Tsoulfas P, Toh S, et al. Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury[J]. Exp Neurol, 2013, 248: 369-380.
4
Vicente Ballesteros Plaza, Bartolomé Marré Pacheco, Celmira Martínez Aguilar, et al. Lesión de la médula espinal: actualización bibliográfica: fisiopatología y tratamiento inicial/ Lesão de medula espinal: atualização da literatura: fisiopatologia e tratamento inicial/ Spinal cord injury: literature update: physiopathology and initial treatment[J]. Coluna/Columna, 2012, 11(1): SciELO.
5
Jaerve A, Müller HW. Chemokines in CNS injury and repair[J]. Cell Tissue Res, 2012, 349(1): 229-248.
6
Jin Y, Bouyer J, Shumsky JS, et al. Transplantation of neural progenitor cells in chronic spinal cord injury[J]. Neuroscience, 2016, 320: 69-82.
7
Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade[J]. Acta Neurobiol Exp (Wars), 2011, 71(2): 281-299.
8
Kwon BK, Fisher CG, Dvorak MF, et al. Strategies to promote neural repair and regeneration after spinal cord injury[J]. Spine (Phila Pa 1976), 2005, 30(17 Suppl): S3-S13.
9
Inoue M, Honmou O, Oka S, et al. Comparative analysis of remyelinating potential of focal and intravenous administration of autologous bone marrow cells into the rat demyelinated spinal cord[J]. Glia, 2003, 44(2): 111-118.
10
Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, et al. Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients[J]. Clin Neurol Neurosurg, 2012, 114(7): 935-939.
11
Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons[J]. J Neurosci Res, 2000, 61(4): 364-370.
12
Kang ES, Ha KY, Kim YH. Fate of transplanted bone marrow derived mesenchymal stem cells following spinal cord injury in rats by transplantation routes[J]. J Korean Med Sci, 2012, 27(6): 586-593.
13
Tetzlaff W, Okon EB, Karimi Abdolrezaee S, et al. A systematic review of cellular transplantation therapies for spinal cord injury[J]. J Neurotrauma, 2011, 28(8): 1611-1682.
14
Uccelli A, Benvenuto F, Laroni A, et al. Neuroprotective features of mesenchymal stem cells[J]. Best Pract Res Clin Haematol, 2011, 24(1): 59-64.
15
Ide C, Nakai Y, Nakano N, et al. Bone marrow stromal cell transplantation for treatment of sub- acute spinal cord injury in the rat[J]. Brain Res, 2010, 1332: 32-47.
16
Richner M, Ulrichsen M, Elmegaard SL, et al. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system[J]. Mol Neurobiol, 2014, 50(3): 945-970.
17
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
18
Hawryluk GW, Mothe A, Wang J, et al. An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury[J]. Stem Cells Dev, 2012, 21(12): 2222-2238.
19
Zhang YJ, Zhang W, Lin CG, et al. Neurotrophin-3 gene modified mesenchymal stem cells promote remyelination and functional recovery in the demyelinated spinal cord of rats[J]. J Neurol Sci, 2012, 313(1/2): 64-74.
20
Cavus G, Altas M, Aras M, et al. Effects of montelukast and methylprednisolone on experimental spinal cord injury in rats[J]. Eur Rev Med Pharmacol Sci, 2014, 18(12): 1770-1777.
21
Nakajima H, Uchida K, Guerrero AR, et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury[J]. J Neurotrauma, 2012, 29(8): 1614-1625.
22
Lehnardt S. Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury[J]. Glia, 20l0, 58(3): 253-263.
23
Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery[J]. Proc Natl Acad Sci U S A, 2002, 99(4): 2199-2204.
24
Akiyama Y, Radtke C, Honmou O, et al. Remyelination of the spinal cord following intravenous delivery of bone marrow cells[J]. Glia, 2002, 39(3): 229-236.
25
Isele NB, Lee HS, Landshamer S, et al. Bone marrow stromal cells mediate protection through stimulation of PI3-K/Akt and MAPK signaling in neurons[J]. Neurochem Int, 2007, 50(1): 243-250.
26
Tondreau T, Meuleman N, Stamatopoulos B, et al. In vitro study of matrix metalloproteinase/tissue inhibitor of metalloproteinase production by mesenchymal stromal cells in response to inflammatory cytokines: the role of their migration in injured tissues[J]. Cytotherapy, 2009, 11(5): 559-569.
27
Wang LJ, Zhang RP, Li JD. Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury[J]. Acta Neurochir (Wien), 2014, 156(7): 1409-1418.
28
Lin WW, Li M, Li Y, et al. Bone marrow stromal cells promote neurite outgrowth of spinal motor neurons by means of neurotrophic factors in vitro[J]. Neurol Sci, 2014, 25(3): 449-457.
29
Chen L, Cui X, Wu Z, et al. Transplantation of bone marrow mesenchymal stem cells pretreated with valproic acid in rats with an acute spinal cord injury[J]. Biosci Trends, 2014, 8(2): 111-119.
30
Jin W, Wang J, Zhu T, et al. Anti-inflammatory effects of curcumin in experimental spinal cord injury in rats[J]. Inflamm Res, 2014, 63(5): 381-387.
31
Guerrero AR, Uchida K, Nakajima H, et al. Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice[J]. J Neuroinflammation, 2012, 9: 40.
[1] 丁璐月, 刘炜, 魏昂, 张瑞东, 王天有, 刘霖霖, 臧博伦, 王亚峰, 郭明发. 贝林妥欧单抗治疗儿童复发/难治CD19+急性B淋巴细胞白血病临床观察[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 194-201.
[2] 李勇, 全勇, 傅仕艳, 冉新泽, 唐红, 柳随义, 李杰, 舒畅, 陈用来, 张静, 杨冰冰, 郝玉徽. 低氧环境对小鼠急性放射损伤的影响[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 299-305.
[3] 曹叙勇, 刘耀升. 脊柱转移瘤手术并发症研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 435-439.
[4] 路炳通, 侯英荣, 胡永强, 齐雅欣. 血清乳酸脱氢酶、白细胞介素6、降钙素原和超敏C反应蛋白水平变化在多发性骨髓瘤合并细菌感染者预后中的评估价值[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 187-193.
[5] 张晗之, 丁梦婷, 佘文珺, 焦婷. 骨髓增生异常综合征继发上颌骨坏死患者术后全数字化即刻赝复体制作[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 253-259.
[6] 陈瑜, 尤良顺, 孟海涛, 杨敏. 嵌合抗原受体T细胞治疗多发性骨髓瘤新进展[J]. 中华移植杂志(电子版), 2023, 17(05): 313-320.
[7] 孔欣, 宋宝全, 刘吟, 张剑, 仇惠英, 吴德沛. 异基因造血干细胞移植并发难治性呃逆一例[J]. 中华移植杂志(电子版), 2023, 17(04): 253-255.
[8] 王楠楠, 刘文红, 孙立, 王婧. 脊髓损伤并发腹股沟嵌顿疝29例围手术期护理体会[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 473-476.
[9] 周艳群, 陈鹏, 刘增慧, 毛晶晶, 黎耀和. 多发性骨髓瘤患者骨髓间充质干细胞衰老关键基因和通路的生物信息学分析与验证[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 274-281.
[10] 刘然然, 方倩倩, 唐泽文. 周围神经损伤对骨髓间充质干细胞增殖及成骨分化影响的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 7-11.
[11] 姚尧, 杨新明, 杜雅坤, 朱宁, 阴彦林, 贾永利, 张瑛, 张培楠, 田野, 陈丽星. 雷公藤甲素与甲泼尼龙调节细胞自噬和凋亡促进脊髓损伤修复的比较研究[J]. 中华神经创伤外科电子杂志, 2022, 08(03): 132-140.
[12] 李俸鑫, 许建文, 陈如玉, 李常秋, 王继羚, 谭秀伟, 卜海峰, 王海霖, 苏义基. 2015至2020年广西医科大学第一附属医院老年脊髓损伤的特征分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 45-50.
[13] 王栋, 张乐, 乔虎云, 刘宏, 王宝娜, 李岩, 王钞崎, 李超, 贾英伟, 张永红. 分期治疗股骨骨折术后慢性骨髓炎的临床疗效研究[J]. 中华老年骨科与康复电子杂志, 2022, 08(04): 197-204.
[14] 梅冬兰, 凌受毅, 梅冰, 邵光亮, 孙志辉. 院外自动心肺复苏机序贯骨髓腔输液在抢救呼吸心跳骤停患者中的应用价值[J]. 中华卫生应急电子杂志, 2023, 09(03): 159-162.
[15] 中华医学会骨科学分会, 邢军超, 毕龙, 陈林, 董世武, 高梁斌, 侯天勇, 侯志勇, 黄伟, 靳慧勇, 李岩, 李忠海, 刘鹏, 刘曦明, 罗飞, 马锋, 沈杰, 宋锦璘, 唐佩福, 吴新宝, 徐宝山, 许建中, 徐永清, 颜滨, 杨鹏, 叶青, 殷国勇, 于腾波, 曾建成, 张长青, 张英泽, 张泽华, 赵枫, 周跃, 朱芸, 邹俊. 自体骨髓富集骨修复技术临床应用专家共识(2023版)[J]. 中华卫生应急电子杂志, 2023, 09(03): 129-141.
阅读次数
全文


摘要