切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2017, Vol. 12 ›› Issue (01) : 65 -68. doi: 10.3877/cma.j.issn.1673-9450.2017.07.012

所属专题: 文献

综述

骨髓基质细胞与脊髓损伤次级阶段修复的相关研究
杨新明1()   
  1. 1. 075000 张家口,河北北方学院附属第一医院骨科
  • 收稿日期:2016-10-18 出版日期:2017-02-01
  • 通信作者: 杨新明
  • 基金资助:
    河北省卫生厅2011年医学科学研究重点项目计划(20110176); 2013年度河北北方学院创新人才培育基金项目(CXRC1322)

Related research of bone marrow stromal cells and secondary stage repair of spinal cord injury

Xinming Yang1,()   

  1. 1. Department of Orthopaedics, the First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China
  • Received:2016-10-18 Published:2017-02-01
  • Corresponding author: Xinming Yang
  • About author:
    Corresponding author: Yang Xinming, Email:
引用本文:

杨新明. 骨髓基质细胞与脊髓损伤次级阶段修复的相关研究[J/OL]. 中华损伤与修复杂志(电子版), 2017, 12(01): 65-68.

Xinming Yang. Related research of bone marrow stromal cells and secondary stage repair of spinal cord injury[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2017, 12(01): 65-68.

随着对脊髓损伤机制研究的认识,次级阶段造成脊髓损害范围及程度远大于初级阶段,后者是不可逆转的原始损伤,而前者是继发的、可逆转的且可控制的生物化学反应过程,通过骨髓间充质干细胞移植可以对脊髓损伤次级阶段进行干预治疗,为临床精准治疗脊髓损伤奠定理论基础。本文现就脊髓损伤次级阶段病理生理变化,骨髓间充质干细胞在脊髓损伤治疗中的潜在能力及现阶段联合治疗成果进行简单的介绍。

With the understanding of the mechanism of spinal cord injury, spinal cord damage scope and degree of secondary phase is greater than the primary stage, the latter is irreversible original damage, while the former is secondary, reversible and can control the biochemical reaction process, through bone marrow mesenchymal stem cell transplantation for spinal cord injury between secondary stage intervention treatment, as the theoretical basis for clinical accurate treatment of spinal cord injury.In this paper, regarding the pathophysiological changes of spinal cord injury secondary stage, between bone marrow mesenchymal stem cells in treatment of spinal cord injury potential ability and the present stage combined treatment results were introduced simply.

1
王海波,杨新明,张瑛,等. 骨髓间充质干细胞移植治疗脊髓损伤的研究进展[J]. 生物骨科材料与临床研究,2012, 9(5): 16-19.
2
Yip PK, Malaspina A. Spinal cord trauma and the molecular point of no return[J]. Mol Neurodegener, 2012, 7: 6.
3
Kumagai G, Tsoulfas P, Toh S, et al. Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury[J]. Exp Neurol, 2013, 248: 369-380.
4
Vicente Ballesteros Plaza, Bartolomé Marré Pacheco, Celmira Martínez Aguilar, et al. Lesión de la médula espinal: actualización bibliográfica: fisiopatología y tratamiento inicial/ Lesão de medula espinal: atualização da literatura: fisiopatologia e tratamento inicial/ Spinal cord injury: literature update: physiopathology and initial treatment[J]. Coluna/Columna, 2012, 11(1): SciELO.
5
Jaerve A, Müller HW. Chemokines in CNS injury and repair[J]. Cell Tissue Res, 2012, 349(1): 229-248.
6
Jin Y, Bouyer J, Shumsky JS, et al. Transplantation of neural progenitor cells in chronic spinal cord injury[J]. Neuroscience, 2016, 320: 69-82.
7
Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade[J]. Acta Neurobiol Exp (Wars), 2011, 71(2): 281-299.
8
Kwon BK, Fisher CG, Dvorak MF, et al. Strategies to promote neural repair and regeneration after spinal cord injury[J]. Spine (Phila Pa 1976), 2005, 30(17 Suppl): S3-S13.
9
Inoue M, Honmou O, Oka S, et al. Comparative analysis of remyelinating potential of focal and intravenous administration of autologous bone marrow cells into the rat demyelinated spinal cord[J]. Glia, 2003, 44(2): 111-118.
10
Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, et al. Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients[J]. Clin Neurol Neurosurg, 2012, 114(7): 935-939.
11
Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons[J]. J Neurosci Res, 2000, 61(4): 364-370.
12
Kang ES, Ha KY, Kim YH. Fate of transplanted bone marrow derived mesenchymal stem cells following spinal cord injury in rats by transplantation routes[J]. J Korean Med Sci, 2012, 27(6): 586-593.
13
Tetzlaff W, Okon EB, Karimi Abdolrezaee S, et al. A systematic review of cellular transplantation therapies for spinal cord injury[J]. J Neurotrauma, 2011, 28(8): 1611-1682.
14
Uccelli A, Benvenuto F, Laroni A, et al. Neuroprotective features of mesenchymal stem cells[J]. Best Pract Res Clin Haematol, 2011, 24(1): 59-64.
15
Ide C, Nakai Y, Nakano N, et al. Bone marrow stromal cell transplantation for treatment of sub- acute spinal cord injury in the rat[J]. Brain Res, 2010, 1332: 32-47.
16
Richner M, Ulrichsen M, Elmegaard SL, et al. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system[J]. Mol Neurobiol, 2014, 50(3): 945-970.
17
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
18
Hawryluk GW, Mothe A, Wang J, et al. An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury[J]. Stem Cells Dev, 2012, 21(12): 2222-2238.
19
Zhang YJ, Zhang W, Lin CG, et al. Neurotrophin-3 gene modified mesenchymal stem cells promote remyelination and functional recovery in the demyelinated spinal cord of rats[J]. J Neurol Sci, 2012, 313(1/2): 64-74.
20
Cavus G, Altas M, Aras M, et al. Effects of montelukast and methylprednisolone on experimental spinal cord injury in rats[J]. Eur Rev Med Pharmacol Sci, 2014, 18(12): 1770-1777.
21
Nakajima H, Uchida K, Guerrero AR, et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury[J]. J Neurotrauma, 2012, 29(8): 1614-1625.
22
Lehnardt S. Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury[J]. Glia, 20l0, 58(3): 253-263.
23
Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery[J]. Proc Natl Acad Sci U S A, 2002, 99(4): 2199-2204.
24
Akiyama Y, Radtke C, Honmou O, et al. Remyelination of the spinal cord following intravenous delivery of bone marrow cells[J]. Glia, 2002, 39(3): 229-236.
25
Isele NB, Lee HS, Landshamer S, et al. Bone marrow stromal cells mediate protection through stimulation of PI3-K/Akt and MAPK signaling in neurons[J]. Neurochem Int, 2007, 50(1): 243-250.
26
Tondreau T, Meuleman N, Stamatopoulos B, et al. In vitro study of matrix metalloproteinase/tissue inhibitor of metalloproteinase production by mesenchymal stromal cells in response to inflammatory cytokines: the role of their migration in injured tissues[J]. Cytotherapy, 2009, 11(5): 559-569.
27
Wang LJ, Zhang RP, Li JD. Transplantation of neurotrophin-3-expressing bone mesenchymal stem cells improves recovery in a rat model of spinal cord injury[J]. Acta Neurochir (Wien), 2014, 156(7): 1409-1418.
28
Lin WW, Li M, Li Y, et al. Bone marrow stromal cells promote neurite outgrowth of spinal motor neurons by means of neurotrophic factors in vitro[J]. Neurol Sci, 2014, 25(3): 449-457.
29
Chen L, Cui X, Wu Z, et al. Transplantation of bone marrow mesenchymal stem cells pretreated with valproic acid in rats with an acute spinal cord injury[J]. Biosci Trends, 2014, 8(2): 111-119.
30
Jin W, Wang J, Zhu T, et al. Anti-inflammatory effects of curcumin in experimental spinal cord injury in rats[J]. Inflamm Res, 2014, 63(5): 381-387.
31
Guerrero AR, Uchida K, Nakajima H, et al. Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice[J]. J Neuroinflammation, 2012, 9: 40.
[1] 陈慧, 姚静, 张宁, 刘磊, 马秀玲, 王小贤, 方爱娟, 管静静. 超声心动图在多发性骨髓瘤心脏淀粉样变中的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 943-949.
[2] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[3] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[4] 袁丹, 钟潇, 王明松, 贾康. 脊髓损伤神经源性膀胱患者间歇导尿期间尿路感染病原菌分布及影响因素[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 229-236.
[5] 罗文斌, 韩玮. 胰腺癌患者首次化疗后中重度骨髓抑制的相关危险因素分析及预测模型构建[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 357-362.
[6] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[7] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[8] 薛文, 刘卓, 贾卫华, 张小义, 刘进, 王爱国, 冯志刚, 杨鑫, 田祺, 段虎斌. 大鼠脊髓损伤后降钙素基因相关肽及神经元钙超载的变化及相关性分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 198-205.
[9] 李景德, 张保艳, 卢培刚, 李博. 法舒地尔对大鼠急性脊髓损伤后神经细胞凋亡和BCL-2蛋白表达水平的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 65-70.
[10] 于同, 矫健航, 姜炜博, 王中汉, 王洋, 伍旭辉, 吴敏飞. 体位复位与椎板切除减压内固定术治疗胸腰段爆裂性骨折的对比性研究[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 331-339.
[11] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
[12] 李忠清, 罗军. 尿蛋白电泳在浆细胞疾病鉴别诊断中的价值[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 217-221.
[13] 张滕, 陶艳玲. Shwachman-Diamond综合征继发骨髓增生异常综合征一例及文献复习[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 178-182.
[14] 陆天, 孙道萍. 调节性B细胞在多发性骨髓瘤中的研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(02): 133-137.
[15] 蔡昊旻, 郭亮, 章靖, 周逸鸣, 罗恒. 胸壁曲霉菌感染3 例报告[J/OL]. 中华胸部外科电子杂志, 2024, 11(04): 242-245.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?