切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2018, Vol. 13 ›› Issue (02) : 146 -150. doi: 10.3877/cma.j.issn.1673-9450.2018.02.016

所属专题: 文献

综述

椎间盘再生与修复的组织工程支架材料研究进展
王峰1, 冯新民2, 张亮2,(), 刘洋1, 南利平1, 周诗丰3   
  1. 1. 116044 大连医科大学;225001 扬州大学临床医学院
    2. 225001 扬州大学临床医学院;225001 扬州,江苏省苏北人民医院骨科研究所
    3. 225001 扬州大学临床医学院
  • 收稿日期:2018-02-02 出版日期:2018-04-01
  • 通信作者: 张亮
  • 基金资助:
    国家自然科学基金青年基金(81401830)

Research progress of biomaterials for intervertebral disc regeneration and repair

Feng Wang1, Xinmin Feng2, Liang Zhang2,(), Yang Liu1, Liping Nan1, Shifeng Zhou3   

  1. 1. Dalian Medical University, Dalian 116044, China; Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, China
    2. Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, China; Institute of Orthopedics, Northern Jiangsu People′s Hospital, Yangzhou 225001, China
    3. Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, China
  • Received:2018-02-02 Published:2018-04-01
  • Corresponding author: Liang Zhang
  • About author:
    Corresponding author: Zhang Liang, Email:
引用本文:

王峰, 冯新民, 张亮, 刘洋, 南利平, 周诗丰. 椎间盘再生与修复的组织工程支架材料研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2018, 13(02): 146-150.

Feng Wang, Xinmin Feng, Liang Zhang, Yang Liu, Liping Nan, Shifeng Zhou. Research progress of biomaterials for intervertebral disc regeneration and repair[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2018, 13(02): 146-150.

椎间盘退变性疾病是导致下腰痛的主要原因之一,传统保守治疗或手术治疗均存在明显局限性。椎间盘组织工程学的发展为椎间盘退变性疾病的治疗提供了新的治疗方案。支架材料作为构建组织工程椎间盘的关键环节,是目前研究的热点和难点。目前常用的支架材料有天然材料、合成材料及复合材料。本文就构建纤维环、髓核和全椎间盘3个方面支架材料的研究现状进行简要综述。虽然组织工程椎间盘还面临着诸多问题,但未来会为椎间盘退变性疾病的治疗带来美好前景。

Intervertebral disc degeneration is one of the main causes of low back pain. However, there are obvious limitations of the traditional conservative treatment and surgical treatment. The development of intervertebral disc tissue engineering technology provides a new treatment option for intervertebral disc degeneration. As a key process in the construction of tissue engineered intervertebral disc, scaffold material is the focus and difficulty. At present, the common materials include natural materials, biologically based materials and synthetic polymers materials. This review focuses on the materials of annulus fibrosus, nucleus pulposus and complete intervertebral disc. While this field still in early development, bioengineering-based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disc disorders.

[1]
Murray CJ, Lopez AD. Measuring the global burden of disease[J]. N Engl J Med, 2013, 369(5):448-457.
[2]
Murray CJ, Atkinson C, Bhalla K, et al. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors[J]. JAMA, 2013, 310(6):591-608.
[3]
Gugliotta M, da Costa BR, Dabis E, et al. Surgical versus conservative treatment for lumbar disc herniation: a prospective cohort study[J]. BMJ Open, 2016, 6(12):e012938.
[4]
Alhashash M, Shousha M, Boehm H. Adjacent Segment Disease After Cervical Spine Fusion: Evaluation of a 70 Patient Long Term Follow-up[J]. Spine (Phila Pa 1976), 2017.
[5]
Wang H, Ma L, Yang D, et al. Incidence and Risk Factors of Postoperative Adjacent Segment Degeneration Following Anterior Decompression and Instrumented Fusion for Degenerative Disorders of the Cervical Spine[J]. World Neurosurg, 2017, 105:78-85.
[6]
陈学明,刘亚东,许崧杰,等. 单节段腰椎间盘突出症单纯髓核摘除术后10年以上随诊观察[J]. 中国脊柱脊髓杂志,2011, 21(8):644-649.
[7]
Miao J, Shen Y, Li C, et al. Cervical Artificial Disc Replacement With Discover Prosthesis Does Not Reduce the Midterm Risk of Heterotopic Ossification: Results of a Cohort Study[J]. Clin Spine Surg, 2018.
[8]
Di Martino A, Papalia R, Albo E, et al. Cervical spine alignment in disc arthroplasty: should we change our perspective?[J]. Eur Spine J, 2015, 24 Suppl 7:810-825.
[9]
Skeppholm M, Henriques T, Tullberg T. Higher reoperation rate following cervical disc replacement in a retrospective, long-term comparative study of 715 patients[J]. Eur Spine J, 2017.
[10]
Ghannam M, Jumah F, Mansour S, et al. Surgical anatomy, radiological features, and molecular biology of the lumbar intervertebral discs[J]. Clin Anat, 2017, 30(2):251-266.
[11]
Roberts S, Urban JP, Evans H, et al. Transport properties of the human cartilage endplate in relation to its composition and calcification[J]. Spine (Phila Pa 1976), 1996, 21(4):415-420.
[12]
Zhou X, Chen L, Grad S, et al. The roles and perspectives of microRNAs as biomarkers for intervertebral disc degeneration[J]. J Tissue Eng Regen Med, 2017, 11(12):3481-3487.
[13]
Gooyers CE, Callaghan JP. Peak Stress in the Annulus Fibrosus Under Cyclic Biaxial Tensile Loading[J]. J Biomech Eng, 2016, 138(5):051006.
[14]
张亮,王静成,冯新民,等. 髓核摘除联合纤维环缝合治疗腰椎间盘突出症的早期疗效观察[J]. 中国医师杂志,2017, 19(10):1492-1495.
[15]
Borde B, Grunert P, Hartl R, et al. Injectable, high-density collagen gels for annulus fibrosus repair: An in vitro rat tail model[J]. J Biomed Mater Res A, 2015, 103(8):2571-2581.
[16]
Cruz MA, Hom WW, DiStefano TJ, et al. Cell-Seeded Adhesive Biomaterial for Repair of Annulus Fibrosus Defects in Intervertebral Discs[J]. Tissue Eng Part A, 2018, 24(3/4):187-198.
[17]
Pirvu T, Blanquer SB, Benneker LM, et al. A combined biomaterial and cellular approach for annulus fibrosus rupture repair[J]. Biomaterials, 2015, 42:11-19.
[18]
Xin L, Zhang C, Zhong F, et al. Minimal invasive annulotomy for induction of disc degeneration and implantation of poly (lactic-co-glycolic acid) (PLGA) plugs for annular repair in a rabbit model[J]. Eur J Med Res, 2016, 21:7.
[19]
Pereira DR, Silva-Correia J, Oliveira JM, et al. Nanocellulose reinforced gellan-gum hydrogels as potential biological substitutes for annulus fibrosus tissue regeneration[J]. Nanomedicine, 2017, 14(3):897-908.
[20]
Wang Y, Wang X, Shang J, et al. Repairing the ruptured annular fibrosus by using type I collagen combined with citric acid, EDC and NHS: an in vivo study[J]. Eur Spine J, 2017, 26(3):884-893.
[21]
袁德超,陈竹,向小聪,等. BMG/PBST双相组织工程纤维环的体外构建[J]. 中华骨科杂志,2016, 36(1):35-42.
[22]
Illien-Jünger S, Sedaghatpour DD, Laudier DM, et al. Development of a bovine decellularized extracellular matrix-biomaterial for nucleus pulposus regeneration[J]. J Orthop Res, 2016, 34(5):876-888.
[23]
Wachs RA, Hoogenboezem EN, Huda HI, et al. Creation of an injectable in situ gelling native extracellular matrix for nucleus pulposus tissue engineering[J]. Spine J, 2017, 17(3):435-444.
[24]
Shan Z, Lin X, Wang S, et al. An injectable nucleus pulposus cell-modified decellularized scaffold: biocompatible material for prevention of disc degeneration[J]. Oncotarget, 2017, 8(25):40276-40288.
[25]
Growney Kalaf EA, Flores R, Bledsoe JG, et al. Characterization of slow-gelling alginate hydrogels for intervertebral disc tissue-engineering applications[J]. Mater Sci Eng C Mater Biol Appl, 2016, 63:198-210.
[26]
Wan S, Borland S, Richardson SM, et al. Self-assembling peptide hydrogel for intervertebral disc tissue engineering[J]. Acta Biomater, 2016, 46:29-40.
[27]
刘龙刚,伍耀宏,陶晖,等. 修饰有BMP-7功能片段的功能化自组装多肽纳米纤维水凝胶RADKPS制备及其生物相容性研究[J]. 中国修复重建外科杂志,2016, 30(4):491-497.
[28]
Li Z, Lang G, Chen X, et al. Polyurethane scaffold with in situ swelling capacity for nucleus pulposus replacement[J]. Biomaterials, 2016, 84:196-209.
[29]
Woiciechowsky C, Abbushi A, Zenclussen ML, et al. Regeneration of nucleus pulposus tissue in an ovine intervertebral disc degeneration model by cell-free resorbable polymer scaffolds[J]. J Tissue Eng Regen Med, 2014, 8(10):811-820.
[30]
Kang R, Li H, Lysdahl H, et al. Cyanoacrylate medical glue application in intervertebral disc annulus defect repair: Mechanical and biocompatible evaluation[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(1):14-20.
[31]
Hu J, Lu Y, Cai L, et al. Functional compressive mechanics and tissue biocompatibility of an injectable SF/PU hydrogel for nucleus pulposus replacement[J]. Sci Rep, 2017, 7(1):2347.
[32]
袁振中,陈跃平. 蚕丝丝素蛋白/壳聚糖支架在骨科再生医学中的作用与特点[J]. 中国组织工程研究,2017, 21(14):2280-2284.
[33]
Tsaryk R, Gloria A, Russo T, et al. Collagen-low molecular weight hyaluronic acid semi-interpenetrating network loaded with gelatin microspheres for cell and growth factor delivery for nucleus pulposus regeneration[J]. Acta Biomater, 2015, 20:10-21.
[34]
Priyadarshani P, Li Y, Yang S, et al. Injectable hydrogel provides growth-permissive environment for human nucleus pulposus cells[J]. J Biomed Mater Res A, 2016, 104(2):419-426.
[35]
Gan Y, Li P, Wang L, et al. An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration[J]. Biomaterials, 2017, 136:12-28.
[36]
Sun Z, Luo B, Liu Z, et al. Effect of perfluorotributylamine-enriched alginate on nucleus pulposus cell: Implications for intervertebral disc regeneration[J]. Biomaterials, 2016, 82:34-47.
[37]
Sloan SR, Jr., Galesso D, Secchieri C, et al. Initial investigation of individual and combined annulus fibrosus and nucleus pulposus repair ex vivo[J]. Acta Biomater, 2017, 59:192-199.
[38]
Choy AT, Chan BP. A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering[J]. PLoS One, 2015, 10(6):e0131827.
[39]
许海委,徐宝山,杨强,等. 新型一体化纤维环-髓核双相支架的制备与评估[J]. 中国修复重建外科杂志,2013, 27(4):475-480.
[40]
Moriguchi Y, Mojica-Santiago J, Grunert P, et al. Total disc replacement using tissue-engineered intervertebral discs in the canine cervical spine[J]. PLoS One, 2017, 12(10):e0185716.
[1] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[2] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[3] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[4] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[5] 康婵娟, 张海涛, 翟静洁. 胰管支架置入术治疗急性胆源性胰腺炎的效果及对患者肝功能、炎症因子水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 667-670.
[6] 李佳伟, 庞建智, 闫鹏宇, 卫阳兵, 杨晓峰. 术中输尿管识别技术研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 520-524.
[7] 杨文刚, 赖义明, 黄浩, 黄海. 斜跨位上下联通置入Allium覆膜输尿管支架治疗输尿管狭窄的初步经验[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 340-345.
[8] 马振威, 宋润夫, 王兵. ERCP胆道内支架与骑跨十二指肠乳头支架置入治疗不可切除肝门部胆管癌疗效的Meta分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 807-812.
[9] 韩加刚, 王振军. 梗阻性左半结肠癌的治疗策略[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 450-458.
[10] 石阳, 于剑锋, 曹可, 翟志伟, 叶春祥, 王振军, 韩加刚. 可扩张金属支架置入联合新辅助化疗治疗完全梗阻性左半结肠癌围手术期并发症分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 464-471.
[11] 梁轩豪, 李小荣, 李亮, 林昌伟. 肠梗阻支架置入术联合新辅助化疗治疗结直肠癌急性肠梗阻的疗效及其预后的Meta 分析[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 472-482.
[12] 张迪, 王春霞, 张学东, 李发馨, 庞淅文, 陈一锋, 张维胜, 王涛. 梗阻性左半结直肠癌自膨式金属支架置入后行腹腔镜手术与开腹手术的短期临床疗效比较[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 375-380.
[13] 孙明策, 韩世焕. 海藻酸盐水凝胶支架在颅骨缺损修复中的应用进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 310-314.
[14] 吴天宇, 刘子璇, 杨浦鑫, 贾思明, 丁凯, 程晓东, 李泳龙, 陈伟, 吕红芝, 张奇. 腰椎间盘突出症保守治疗进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 379-384.
[15] 牟磊, 徐东成, 韩鑫, 徐长江, 韩坤锜, 薛叶潇, 牟媛, 秦文玲, 刘相静, 陈哲, 高楠. 五虫通络胶囊防治椎动脉开口支架术后再狭窄发生的效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 467-472.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?