切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2018, Vol. 13 ›› Issue (02) : 146 -150. doi: 10.3877/cma.j.issn.1673-9450.2018.02.016

所属专题: 文献

综述

椎间盘再生与修复的组织工程支架材料研究进展
王峰1, 冯新民2, 张亮2,(), 刘洋1, 南利平1, 周诗丰3   
  1. 1. 116044 大连医科大学;225001 扬州大学临床医学院
    2. 225001 扬州大学临床医学院;225001 扬州,江苏省苏北人民医院骨科研究所
    3. 225001 扬州大学临床医学院
  • 收稿日期:2018-02-02 出版日期:2018-04-01
  • 通信作者: 张亮
  • 基金资助:
    国家自然科学基金青年基金(81401830)

Research progress of biomaterials for intervertebral disc regeneration and repair

Feng Wang1, Xinmin Feng2, Liang Zhang2,(), Yang Liu1, Liping Nan1, Shifeng Zhou3   

  1. 1. Dalian Medical University, Dalian 116044, China; Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, China
    2. Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, China; Institute of Orthopedics, Northern Jiangsu People′s Hospital, Yangzhou 225001, China
    3. Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225001, China
  • Received:2018-02-02 Published:2018-04-01
  • Corresponding author: Liang Zhang
  • About author:
    Corresponding author: Zhang Liang, Email:
引用本文:

王峰, 冯新民, 张亮, 刘洋, 南利平, 周诗丰. 椎间盘再生与修复的组织工程支架材料研究进展[J]. 中华损伤与修复杂志(电子版), 2018, 13(02): 146-150.

Feng Wang, Xinmin Feng, Liang Zhang, Yang Liu, Liping Nan, Shifeng Zhou. Research progress of biomaterials for intervertebral disc regeneration and repair[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2018, 13(02): 146-150.

椎间盘退变性疾病是导致下腰痛的主要原因之一,传统保守治疗或手术治疗均存在明显局限性。椎间盘组织工程学的发展为椎间盘退变性疾病的治疗提供了新的治疗方案。支架材料作为构建组织工程椎间盘的关键环节,是目前研究的热点和难点。目前常用的支架材料有天然材料、合成材料及复合材料。本文就构建纤维环、髓核和全椎间盘3个方面支架材料的研究现状进行简要综述。虽然组织工程椎间盘还面临着诸多问题,但未来会为椎间盘退变性疾病的治疗带来美好前景。

Intervertebral disc degeneration is one of the main causes of low back pain. However, there are obvious limitations of the traditional conservative treatment and surgical treatment. The development of intervertebral disc tissue engineering technology provides a new treatment option for intervertebral disc degeneration. As a key process in the construction of tissue engineered intervertebral disc, scaffold material is the focus and difficulty. At present, the common materials include natural materials, biologically based materials and synthetic polymers materials. This review focuses on the materials of annulus fibrosus, nucleus pulposus and complete intervertebral disc. While this field still in early development, bioengineering-based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disc disorders.

[1]
Murray CJ, Lopez AD. Measuring the global burden of disease[J]. N Engl J Med, 2013, 369(5):448-457.
[2]
Murray CJ, Atkinson C, Bhalla K, et al. The state of US health, 1990-2010: burden of diseases, injuries, and risk factors[J]. JAMA, 2013, 310(6):591-608.
[3]
Gugliotta M, da Costa BR, Dabis E, et al. Surgical versus conservative treatment for lumbar disc herniation: a prospective cohort study[J]. BMJ Open, 2016, 6(12):e012938.
[4]
Alhashash M, Shousha M, Boehm H. Adjacent Segment Disease After Cervical Spine Fusion: Evaluation of a 70 Patient Long Term Follow-up[J]. Spine (Phila Pa 1976), 2017.
[5]
Wang H, Ma L, Yang D, et al. Incidence and Risk Factors of Postoperative Adjacent Segment Degeneration Following Anterior Decompression and Instrumented Fusion for Degenerative Disorders of the Cervical Spine[J]. World Neurosurg, 2017, 105:78-85.
[6]
陈学明,刘亚东,许崧杰,等. 单节段腰椎间盘突出症单纯髓核摘除术后10年以上随诊观察[J]. 中国脊柱脊髓杂志,2011, 21(8):644-649.
[7]
Miao J, Shen Y, Li C, et al. Cervical Artificial Disc Replacement With Discover Prosthesis Does Not Reduce the Midterm Risk of Heterotopic Ossification: Results of a Cohort Study[J]. Clin Spine Surg, 2018.
[8]
Di Martino A, Papalia R, Albo E, et al. Cervical spine alignment in disc arthroplasty: should we change our perspective?[J]. Eur Spine J, 2015, 24 Suppl 7:810-825.
[9]
Skeppholm M, Henriques T, Tullberg T. Higher reoperation rate following cervical disc replacement in a retrospective, long-term comparative study of 715 patients[J]. Eur Spine J, 2017.
[10]
Ghannam M, Jumah F, Mansour S, et al. Surgical anatomy, radiological features, and molecular biology of the lumbar intervertebral discs[J]. Clin Anat, 2017, 30(2):251-266.
[11]
Roberts S, Urban JP, Evans H, et al. Transport properties of the human cartilage endplate in relation to its composition and calcification[J]. Spine (Phila Pa 1976), 1996, 21(4):415-420.
[12]
Zhou X, Chen L, Grad S, et al. The roles and perspectives of microRNAs as biomarkers for intervertebral disc degeneration[J]. J Tissue Eng Regen Med, 2017, 11(12):3481-3487.
[13]
Gooyers CE, Callaghan JP. Peak Stress in the Annulus Fibrosus Under Cyclic Biaxial Tensile Loading[J]. J Biomech Eng, 2016, 138(5):051006.
[14]
张亮,王静成,冯新民,等. 髓核摘除联合纤维环缝合治疗腰椎间盘突出症的早期疗效观察[J]. 中国医师杂志,2017, 19(10):1492-1495.
[15]
Borde B, Grunert P, Hartl R, et al. Injectable, high-density collagen gels for annulus fibrosus repair: An in vitro rat tail model[J]. J Biomed Mater Res A, 2015, 103(8):2571-2581.
[16]
Cruz MA, Hom WW, DiStefano TJ, et al. Cell-Seeded Adhesive Biomaterial for Repair of Annulus Fibrosus Defects in Intervertebral Discs[J]. Tissue Eng Part A, 2018, 24(3/4):187-198.
[17]
Pirvu T, Blanquer SB, Benneker LM, et al. A combined biomaterial and cellular approach for annulus fibrosus rupture repair[J]. Biomaterials, 2015, 42:11-19.
[18]
Xin L, Zhang C, Zhong F, et al. Minimal invasive annulotomy for induction of disc degeneration and implantation of poly (lactic-co-glycolic acid) (PLGA) plugs for annular repair in a rabbit model[J]. Eur J Med Res, 2016, 21:7.
[19]
Pereira DR, Silva-Correia J, Oliveira JM, et al. Nanocellulose reinforced gellan-gum hydrogels as potential biological substitutes for annulus fibrosus tissue regeneration[J]. Nanomedicine, 2017, 14(3):897-908.
[20]
Wang Y, Wang X, Shang J, et al. Repairing the ruptured annular fibrosus by using type I collagen combined with citric acid, EDC and NHS: an in vivo study[J]. Eur Spine J, 2017, 26(3):884-893.
[21]
袁德超,陈竹,向小聪,等. BMG/PBST双相组织工程纤维环的体外构建[J]. 中华骨科杂志,2016, 36(1):35-42.
[22]
Illien-Jünger S, Sedaghatpour DD, Laudier DM, et al. Development of a bovine decellularized extracellular matrix-biomaterial for nucleus pulposus regeneration[J]. J Orthop Res, 2016, 34(5):876-888.
[23]
Wachs RA, Hoogenboezem EN, Huda HI, et al. Creation of an injectable in situ gelling native extracellular matrix for nucleus pulposus tissue engineering[J]. Spine J, 2017, 17(3):435-444.
[24]
Shan Z, Lin X, Wang S, et al. An injectable nucleus pulposus cell-modified decellularized scaffold: biocompatible material for prevention of disc degeneration[J]. Oncotarget, 2017, 8(25):40276-40288.
[25]
Growney Kalaf EA, Flores R, Bledsoe JG, et al. Characterization of slow-gelling alginate hydrogels for intervertebral disc tissue-engineering applications[J]. Mater Sci Eng C Mater Biol Appl, 2016, 63:198-210.
[26]
Wan S, Borland S, Richardson SM, et al. Self-assembling peptide hydrogel for intervertebral disc tissue engineering[J]. Acta Biomater, 2016, 46:29-40.
[27]
刘龙刚,伍耀宏,陶晖,等. 修饰有BMP-7功能片段的功能化自组装多肽纳米纤维水凝胶RADKPS制备及其生物相容性研究[J]. 中国修复重建外科杂志,2016, 30(4):491-497.
[28]
Li Z, Lang G, Chen X, et al. Polyurethane scaffold with in situ swelling capacity for nucleus pulposus replacement[J]. Biomaterials, 2016, 84:196-209.
[29]
Woiciechowsky C, Abbushi A, Zenclussen ML, et al. Regeneration of nucleus pulposus tissue in an ovine intervertebral disc degeneration model by cell-free resorbable polymer scaffolds[J]. J Tissue Eng Regen Med, 2014, 8(10):811-820.
[30]
Kang R, Li H, Lysdahl H, et al. Cyanoacrylate medical glue application in intervertebral disc annulus defect repair: Mechanical and biocompatible evaluation[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(1):14-20.
[31]
Hu J, Lu Y, Cai L, et al. Functional compressive mechanics and tissue biocompatibility of an injectable SF/PU hydrogel for nucleus pulposus replacement[J]. Sci Rep, 2017, 7(1):2347.
[32]
袁振中,陈跃平. 蚕丝丝素蛋白/壳聚糖支架在骨科再生医学中的作用与特点[J]. 中国组织工程研究,2017, 21(14):2280-2284.
[33]
Tsaryk R, Gloria A, Russo T, et al. Collagen-low molecular weight hyaluronic acid semi-interpenetrating network loaded with gelatin microspheres for cell and growth factor delivery for nucleus pulposus regeneration[J]. Acta Biomater, 2015, 20:10-21.
[34]
Priyadarshani P, Li Y, Yang S, et al. Injectable hydrogel provides growth-permissive environment for human nucleus pulposus cells[J]. J Biomed Mater Res A, 2016, 104(2):419-426.
[35]
Gan Y, Li P, Wang L, et al. An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration[J]. Biomaterials, 2017, 136:12-28.
[36]
Sun Z, Luo B, Liu Z, et al. Effect of perfluorotributylamine-enriched alginate on nucleus pulposus cell: Implications for intervertebral disc regeneration[J]. Biomaterials, 2016, 82:34-47.
[37]
Sloan SR, Jr., Galesso D, Secchieri C, et al. Initial investigation of individual and combined annulus fibrosus and nucleus pulposus repair ex vivo[J]. Acta Biomater, 2017, 59:192-199.
[38]
Choy AT, Chan BP. A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering[J]. PLoS One, 2015, 10(6):e0131827.
[39]
许海委,徐宝山,杨强,等. 新型一体化纤维环-髓核双相支架的制备与评估[J]. 中国修复重建外科杂志,2013, 27(4):475-480.
[40]
Moriguchi Y, Mojica-Santiago J, Grunert P, et al. Total disc replacement using tissue-engineered intervertebral discs in the canine cervical spine[J]. PLoS One, 2017, 12(10):e0185716.
[1] 戴云, 徐超丽, 林秀玉, 孙晖, 李娟, 宋秋怡, 王晓春, 杨斌. 超声造影评价移植肾动脉狭窄支架治疗短期疗效的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(03): 301-306.
[2] 郭璐琦, 赵雅琦, 李霁欣, 周兰, 林金鹏, 张子砚, 李俊杰, 王少白. 免荷矫形器对膝骨关节炎的生物力学影响的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 560-565.
[3] 刘虹宏, 杨永红, 张冬花, 林运. 老年冠脉分叉病变主支支架植入后在损伤边支使用药物涂层球囊进行修复的临床研究[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 387-393.
[4] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[5] 张海涛, 康婵娟, 翟静洁. 胰管支架置入治疗急性胆源性胰腺炎效果观察[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 654-657.
[6] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[7] 张翼飞, 郭强, 赖华健, 钟文文, 叶雷, 马波, 瞿虎, 尧冰, 邱剑光, 王德娟. 加速康复外科在儿童尿道下裂围术期的应用效果分析[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 367-371.
[8] 范小彧, 孙司正, 鄂一民, 喻春钊. 梗阻性左半结肠癌不同手术治疗方案的选择应用[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 500-504.
[9] 赵俊华, 杨政伟, 刘阳, 郑银福, 刘建. 规范的术后康复训练对PELD术预后的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(03): 157-165.
[10] 曹玲, 张业坡, 袁珊珊, 胡红杰, 余日胜. 恶性胆道梗阻行胆道支架置入术后危重并发症及其危险因素研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 203-210.
[11] 许少睿, 孔杰, 马骏, 尚金林, 苏浩波. 西门子Artis Zee系列神经介入术专属透视策略的创建与应用[J]. 中华介入放射学电子杂志, 2023, 11(04): 318-323.
[12] 吴佳霖, 罗骏阳, 钟胜, 王有枝, 姜在波. 肝内小直径覆膜支架联合抽栓、溶栓治疗门静脉血栓二例[J]. 中华介入放射学电子杂志, 2023, 11(04): 377-379.
[13] 袁畅, 李志刚. 胸部恶性肿瘤相关气管食管瘘的诊治进展[J]. 中华胸部外科电子杂志, 2023, 10(04): 241-246.
[14] 陆东生, 桂建康, 范衍, 刘春林, 李祉岑, 宫崧峰. 复合手术治疗椎动脉慢性闭塞一例[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 386-393.
[15] 黎力梦, 陶悦, 刘坚军, 李旭, 王晓俊, 汪涛, 陈斌, 范隆华. 血小板抑制不足与颈动脉支架植入术后不良事件的相关性研究[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 227-231.
阅读次数
全文


摘要