切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2018, Vol. 13 ›› Issue (04) : 305 -307. doi: 10.3877/cma.j.issn.1673-9450.2018.04.012

所属专题: 文献

综述

硫化氢与机体损伤后线粒体变化关系的研究现状
耿莉莉1, 李毅2,()   
  1. 1. 810016 西宁,青海大学
    2. 810001 西宁,青海大学附属医院烧伤整形科
  • 收稿日期:2018-04-15 出版日期:2018-08-01
  • 通信作者: 李毅
  • 基金资助:
    国家自然科学基金(81660320)

Research status of relationship between hydrogen sulfide and mitochondrial injury after the injury of organism

Lili Geng1, Yi Li2,()   

  1. 1. Qinghai University, Xining 810006, China
    2. Department of Burns and Plastic Surgery, Affiliated Hospital of Qinghai University, Xining 810001, China
  • Received:2018-04-15 Published:2018-08-01
  • Corresponding author: Yi Li
  • About author:
    Corresponding author: Li Yi, Email:
引用本文:

耿莉莉, 李毅. 硫化氢与机体损伤后线粒体变化关系的研究现状[J/OL]. 中华损伤与修复杂志(电子版), 2018, 13(04): 305-307.

Lili Geng, Yi Li. Research status of relationship between hydrogen sulfide and mitochondrial injury after the injury of organism[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2018, 13(04): 305-307.

线粒体作为细胞内氧化代谢的主要场所、供应细胞主要能量的细胞器,在细胞正常生理功能的维持上起重要作用,对各种各样的损伤极为敏感。国内外研究证明,外源性硫化氢在机体损伤的情况下对神经细胞、平滑肌细胞、心肌细胞、表皮细胞等细胞内的线粒体有一定的保护作用,减轻细胞的损伤程度,从而促进机体恢复。本文着重总结硫化氢与几种重要器官损伤后细胞内线粒体的具体变化机制的关系,对硫化氢减轻线粒体损伤的最新研究进展进行综述。

Mitochondria, as the main sites of cellular oxidative metabolism, and the organelles that supply the main energy of cells, plays an important role in the maintenance of normal physiological functions of cells, and is extremely sensitive to all kinds of injury. Studies at home and abroad have demonstrated that exogenous hydrogen sulfide could protect mitochondria in nerve cells, smooth muscle cells, myocardial cells, epidermis cells, and other intracellular mitochondria under the injury of organism, which can reduce the extent of cell injury to promote the body′s recovery. This article summarizes the specific mechanism of the change of hydrogen sulfide in the cell mitochondria after several important organs injury, and reviews the latest research progress on the reduction of mitochondrial injury by hydrogen sulfide.

[1]
Hu LF, Lu M, Hon Wong PT, et al. Hydrogen sulfide: neurophysiology and neuropathology[J]. Antioxid Redox Signal, 2011, 15(2):405-419.
[2]
Park SJ, Kim TH, Lee SH, et al. Expression levels of endogenous hydrogen sulfide are altered in patients with allergic rhinitis[J]. Larynqoscope, 2013, 123(3):557-563.
[3]
Kimura H. Production and physiological effects of hydrogen suifide[J]. Antioxid Redox Signal, 2014, 20(5):783-793.
[4]
李国风,杜全胜,张勤增,等. 硫化氢对局灶性脑缺血大鼠脑组织氧化应激的影响[J]. 河北医药,2016, 38(1):5-8.
[5]
张翀,余丹. 硫化氢治疗脑缺血再灌注损伤的研究进展[J/CD]. 中华临床医师杂志(电子版), 2016, 10(23):3626-3630.
[6]
Pan H, Xie X, Chen D, et al. Protective and biogenesis effects of Sodium hydrosulfide on brain mitoch ondria after cardiac arrest and resuscitation[J]. Eur J Pharmacol, 2014, 741:74-82.
[7]
Li GF, Luo HK, Li LF, et al. Dual effects of hydrogen sulphide on focal cerebral ischaemic injury via modulation of oxidative stress-induced apoptosis[J]. Clin Exp Pharmacol Physiol, 2012, 39(9):765-771.
[8]
陆琦,崔翰斌. 硫化氢和心肌缺血再灌注损伤[J]. 临床心血管病杂志,2016, 32(2):112-115.
[9]
Banu SA, Ravindran S, Kurian GA. Hydrogen sulfide postconditioning preserves interfibrillar mitochondria of rat heart during ischemia reperfusion injury[J]. Cell Stress Chaperones, 2016, 21(4):571-582.
[10]
Ravindran S, Ansari Banu S, Kurian GA. Hydrogen sulfide preconditioning shows differential protection towards interfibrillar and subsarcolemmal mitochondria from isolated rat heart subjected torevascularization injury[J]. Cardiovasc Pathol, 2016, 25(4):306-315.
[11]
King AL, Polhemus DJ, Bhushan S, et al. Hydrogen sulfidecytoprotective signaling is endothelial nitric oxide synthasenitric oxide dependent[J]. Proc Natl Acad Sci U S A, 2014, 111(8):3182-3187.
[12]
梁伟杰,陈景福,张稳柱,等. ATP敏感性钾通道在硫化氢抑制高糖引起的心肌细胞损伤中的作用[J]. 中国病理生理杂志,2015, 31(5):785-790.
[13]
Zhang Y, Tang ZH, Ren Z, et al. Hydrogen sulfide,thenext potent preventive and therapeutic agent in aging andage-associated diseases[J]. Mol Cell Biol, 2013, 33(6):1104-1113.
[14]
Hu LF, Lu M, Wu ZY, et al. Hydrogen sulfide inhibits rotenone induced apoptosis ia preservation of mitochondrial function[J]. Mol Pharmacol, 2009, 75(1):27-34.
[15]
刘芳,张建新,李兰芳,等. 硫化氢对急性心肌缺血大鼠心肌线粒体损伤的影响[J]. 中国应用生理学杂志,2011, 27(2):158-162.
[16]
唐小卿,杨春涛,冯鉴强. 第三种气体信号分子硫化氢的神经保护作用研究进展[J]. 中南医学科学杂志,2012, 40(1):1-5.
[17]
Kimura H. Signaling molecules: hydrogen sulfide and polysulfide[J]. Antioxid Redox Signal, 2015, 22(5):362-376.
[18]
Yu YP, Chi XL, Liu LJ. A hypothesis:hydrogen sulfide might be neuroprotective against subarachnoid hemorrhage induced brain injury[J]. ScientificWorldJournal, 2014, 2014:432318.
[19]
Wang JF, Li Y, Song JN, et al. Role of hydrogen sulfide in secondary neuronal injury[J]. Neurochem Int, 2014, 64:37-47.
[20]
Eto K, Asada T, Arima K, et al. Brain hydrogen sulfide is severely decreased in Alzheimers diseas[J]. Biochem Biophys Res Commun, 2002, 293(5):1485-1488.
[21]
唐祎昀,唐小卿. 硫化氢神经生物学作用的研究进展[J]. 生理科学进展,2017, 48(1):42-51.
[22]
Tang XQ, Shen XT, Huang YE, et al. Inhibition of endogenous hydrogen sulfide generation is associated with homocysteine-induced neurotoxicity:role of ERK1/2 activation[J]. J Mol Neurosci, 2011, 45(1):60-67.
[23]
Tang XQ, Shen XT, Huang YE, et al. Hydrogen sulfide antagonizes homocysteine-induced neurotoxicity in PC12 cells[J]. Neurosci Res, 2010, 68(3):241-249.
[24]
Li L, Moore PK. Putative biological roles of hydrogen sulfide in health and disease:a breath of not so fresh air[J]. Trends Pharmacol Sci, 2008, 29(2):84-90.
[25]
Nichols CG. KATP channels as molecular sensors of cellular metabolism[J]. Nature, 2006, 440(7083):470-476.
[26]
张浩浩,包金锁. 气体分子硫化氢神经保护作用机制的研究进展[J/CD]. 世界最新医学信息文摘(连续型电子期刊), 2015, 15(57):45, 47.
[27]
Zhao FL, Qiao PF, Yan N, et al. Hydrogen Sulfide Selectively Inhibits gamma-Secretase Activity and Decreases Mitochondrial Abeta Production in Neurons from APP/PS1 Transgenic Mice[J]. Neurochem Res, 2016, 41(5):1145-1159.
[28]
Calvert JW, Elston M, Nicholson CK, et al. Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice[J]. Circulation, 2010, 122(1):11-19.
[29]
唐诚,李毅. 硫化氢促进创面愈合的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2018, 13(1):69-71.
[30]
李毅,王洪瑾,吴晓伟,等. 硫化氢对严重烧伤大鼠肠道生物屏障的影响[J]. 中华烧伤杂志,2015, 31(1):37-41.
[1] 江雅婷, 刘林峰, 沈辰曦, 陈奔, 刘婷, 龚裕强. 组织相关巨噬素3 保护肺血管内皮糖萼治疗急性呼吸窘迫综合征的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 353-362.
[2] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[3] 李友, 唐林峰, 杜伟伟, 刘海亮, 余新水, 沈佳宇, 巨积辉. 皮瓣联合掌长肌腱折叠单排三点式固定治疗指背侧创面伴锤状指畸形的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 485-490.
[4] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[5] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[6] 韩萌萌, 冯雪园, 马宁. 乳腺癌改良根治术后桡神经损伤1例[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 117-118.
[7] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[8] 王学虎, 赵渝. 复杂腹壁疝手术中血管损伤并发症的预防和处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 616-619.
[9] 周正阳, 陈凯, 仇多良, 邵乐宁, 吴浩荣, 钟丰云. 腹腔镜腹股沟疝修补术后出血原因分析及处理[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 660-664.
[10] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[11] 于同, 矫健航, 姜炜博, 王中汉, 王洋, 伍旭辉, 吴敏飞. 体位复位与椎板切除减压内固定术治疗胸腰段爆裂性骨折的对比性研究[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 331-339.
[12] 张津, 李欣达, 徐如祥. 神经类器官在大脑常见疾病治疗中的应用及在脊髓损伤修复中的应用前景[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 257-263.
[13] 王如海, 王绅, 张敏, 李春, 韩超, 于强, 胡海成, 李习珍. 重型创伤性脑损伤患者去骨瓣减压术后短期死亡风险的影响因素分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 285-291.
[14] 沈炎, 张俊峰, 唐春芳. 预后营养指数结合血清降钙素原、胱抑素C及视黄醇结合蛋白对急性胰腺炎并发急性肾损伤的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 536-540.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?