切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2018, Vol. 13 ›› Issue (04) : 305 -307. doi: 10.3877/cma.j.issn.1673-9450.2018.04.012

所属专题: 文献

综述

硫化氢与机体损伤后线粒体变化关系的研究现状
耿莉莉1, 李毅2,()   
  1. 1. 810016 西宁,青海大学
    2. 810001 西宁,青海大学附属医院烧伤整形科
  • 收稿日期:2018-04-15 出版日期:2018-08-01
  • 通信作者: 李毅
  • 基金资助:
    国家自然科学基金(81660320)

Research status of relationship between hydrogen sulfide and mitochondrial injury after the injury of organism

Lili Geng1, Yi Li2,()   

  1. 1. Qinghai University, Xining 810006, China
    2. Department of Burns and Plastic Surgery, Affiliated Hospital of Qinghai University, Xining 810001, China
  • Received:2018-04-15 Published:2018-08-01
  • Corresponding author: Yi Li
  • About author:
    Corresponding author: Li Yi, Email:
引用本文:

耿莉莉, 李毅. 硫化氢与机体损伤后线粒体变化关系的研究现状[J]. 中华损伤与修复杂志(电子版), 2018, 13(04): 305-307.

Lili Geng, Yi Li. Research status of relationship between hydrogen sulfide and mitochondrial injury after the injury of organism[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2018, 13(04): 305-307.

线粒体作为细胞内氧化代谢的主要场所、供应细胞主要能量的细胞器,在细胞正常生理功能的维持上起重要作用,对各种各样的损伤极为敏感。国内外研究证明,外源性硫化氢在机体损伤的情况下对神经细胞、平滑肌细胞、心肌细胞、表皮细胞等细胞内的线粒体有一定的保护作用,减轻细胞的损伤程度,从而促进机体恢复。本文着重总结硫化氢与几种重要器官损伤后细胞内线粒体的具体变化机制的关系,对硫化氢减轻线粒体损伤的最新研究进展进行综述。

Mitochondria, as the main sites of cellular oxidative metabolism, and the organelles that supply the main energy of cells, plays an important role in the maintenance of normal physiological functions of cells, and is extremely sensitive to all kinds of injury. Studies at home and abroad have demonstrated that exogenous hydrogen sulfide could protect mitochondria in nerve cells, smooth muscle cells, myocardial cells, epidermis cells, and other intracellular mitochondria under the injury of organism, which can reduce the extent of cell injury to promote the body′s recovery. This article summarizes the specific mechanism of the change of hydrogen sulfide in the cell mitochondria after several important organs injury, and reviews the latest research progress on the reduction of mitochondrial injury by hydrogen sulfide.

[1]
Hu LF, Lu M, Hon Wong PT, et al. Hydrogen sulfide: neurophysiology and neuropathology[J]. Antioxid Redox Signal, 2011, 15(2):405-419.
[2]
Park SJ, Kim TH, Lee SH, et al. Expression levels of endogenous hydrogen sulfide are altered in patients with allergic rhinitis[J]. Larynqoscope, 2013, 123(3):557-563.
[3]
Kimura H. Production and physiological effects of hydrogen suifide[J]. Antioxid Redox Signal, 2014, 20(5):783-793.
[4]
李国风,杜全胜,张勤增,等. 硫化氢对局灶性脑缺血大鼠脑组织氧化应激的影响[J]. 河北医药,2016, 38(1):5-8.
[5]
张翀,余丹. 硫化氢治疗脑缺血再灌注损伤的研究进展[J/CD]. 中华临床医师杂志(电子版), 2016, 10(23):3626-3630.
[6]
Pan H, Xie X, Chen D, et al. Protective and biogenesis effects of Sodium hydrosulfide on brain mitoch ondria after cardiac arrest and resuscitation[J]. Eur J Pharmacol, 2014, 741:74-82.
[7]
Li GF, Luo HK, Li LF, et al. Dual effects of hydrogen sulphide on focal cerebral ischaemic injury via modulation of oxidative stress-induced apoptosis[J]. Clin Exp Pharmacol Physiol, 2012, 39(9):765-771.
[8]
陆琦,崔翰斌. 硫化氢和心肌缺血再灌注损伤[J]. 临床心血管病杂志,2016, 32(2):112-115.
[9]
Banu SA, Ravindran S, Kurian GA. Hydrogen sulfide postconditioning preserves interfibrillar mitochondria of rat heart during ischemia reperfusion injury[J]. Cell Stress Chaperones, 2016, 21(4):571-582.
[10]
Ravindran S, Ansari Banu S, Kurian GA. Hydrogen sulfide preconditioning shows differential protection towards interfibrillar and subsarcolemmal mitochondria from isolated rat heart subjected torevascularization injury[J]. Cardiovasc Pathol, 2016, 25(4):306-315.
[11]
King AL, Polhemus DJ, Bhushan S, et al. Hydrogen sulfidecytoprotective signaling is endothelial nitric oxide synthasenitric oxide dependent[J]. Proc Natl Acad Sci U S A, 2014, 111(8):3182-3187.
[12]
梁伟杰,陈景福,张稳柱,等. ATP敏感性钾通道在硫化氢抑制高糖引起的心肌细胞损伤中的作用[J]. 中国病理生理杂志,2015, 31(5):785-790.
[13]
Zhang Y, Tang ZH, Ren Z, et al. Hydrogen sulfide,thenext potent preventive and therapeutic agent in aging andage-associated diseases[J]. Mol Cell Biol, 2013, 33(6):1104-1113.
[14]
Hu LF, Lu M, Wu ZY, et al. Hydrogen sulfide inhibits rotenone induced apoptosis ia preservation of mitochondrial function[J]. Mol Pharmacol, 2009, 75(1):27-34.
[15]
刘芳,张建新,李兰芳,等. 硫化氢对急性心肌缺血大鼠心肌线粒体损伤的影响[J]. 中国应用生理学杂志,2011, 27(2):158-162.
[16]
唐小卿,杨春涛,冯鉴强. 第三种气体信号分子硫化氢的神经保护作用研究进展[J]. 中南医学科学杂志,2012, 40(1):1-5.
[17]
Kimura H. Signaling molecules: hydrogen sulfide and polysulfide[J]. Antioxid Redox Signal, 2015, 22(5):362-376.
[18]
Yu YP, Chi XL, Liu LJ. A hypothesis:hydrogen sulfide might be neuroprotective against subarachnoid hemorrhage induced brain injury[J]. ScientificWorldJournal, 2014, 2014:432318.
[19]
Wang JF, Li Y, Song JN, et al. Role of hydrogen sulfide in secondary neuronal injury[J]. Neurochem Int, 2014, 64:37-47.
[20]
Eto K, Asada T, Arima K, et al. Brain hydrogen sulfide is severely decreased in Alzheimers diseas[J]. Biochem Biophys Res Commun, 2002, 293(5):1485-1488.
[21]
唐祎昀,唐小卿. 硫化氢神经生物学作用的研究进展[J]. 生理科学进展,2017, 48(1):42-51.
[22]
Tang XQ, Shen XT, Huang YE, et al. Inhibition of endogenous hydrogen sulfide generation is associated with homocysteine-induced neurotoxicity:role of ERK1/2 activation[J]. J Mol Neurosci, 2011, 45(1):60-67.
[23]
Tang XQ, Shen XT, Huang YE, et al. Hydrogen sulfide antagonizes homocysteine-induced neurotoxicity in PC12 cells[J]. Neurosci Res, 2010, 68(3):241-249.
[24]
Li L, Moore PK. Putative biological roles of hydrogen sulfide in health and disease:a breath of not so fresh air[J]. Trends Pharmacol Sci, 2008, 29(2):84-90.
[25]
Nichols CG. KATP channels as molecular sensors of cellular metabolism[J]. Nature, 2006, 440(7083):470-476.
[26]
张浩浩,包金锁. 气体分子硫化氢神经保护作用机制的研究进展[J/CD]. 世界最新医学信息文摘(连续型电子期刊), 2015, 15(57):45, 47.
[27]
Zhao FL, Qiao PF, Yan N, et al. Hydrogen Sulfide Selectively Inhibits gamma-Secretase Activity and Decreases Mitochondrial Abeta Production in Neurons from APP/PS1 Transgenic Mice[J]. Neurochem Res, 2016, 41(5):1145-1159.
[28]
Calvert JW, Elston M, Nicholson CK, et al. Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice[J]. Circulation, 2010, 122(1):11-19.
[29]
唐诚,李毅. 硫化氢促进创面愈合的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2018, 13(1):69-71.
[30]
李毅,王洪瑾,吴晓伟,等. 硫化氢对严重烧伤大鼠肠道生物屏障的影响[J]. 中华烧伤杂志,2015, 31(1):37-41.
[1] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 米洁, 陈晨, 李佳玲, 裴海娜, 张恒博, 李飞, 李东杰. 儿童头面部外伤特点分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 511-515.
[4] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[5] 何毅, 余东升. 年轻恒牙脱位性损伤的诊疗进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 400-406.
[6] 吴家顺, 孙伟, 曾国忠, 申仪, 郑广森, 唐海阔. 下颌第三磨牙拔除术中下牙槽神经损伤的原因、临床评估与预防[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 394-399.
[7] 岳志浩, 王晶, 闫子玉, 葛娜, 许向亮, 单小峰, 崔念晖. 牙槽外科相关舌神经损伤早期诊断及治疗中磁共振神经成像技术的应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 413-417.
[8] 尚培中, 张润萍, 张伟, 贾国洪, 李晓武, 苗建军, 刘冰. 梗阻性黄疸临床防治新技术单中心应用研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 104-107.
[9] 李晓玉, 江庆, 汤海琴, 罗静枝. 围手术期综合管理对胆总管结石并急性胆管炎患者ERCP +LC术后心肌损伤的影响研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 57-60.
[10] 胡建生, 周佐霖, 孙林梅, 马腾辉. 不同诊断分型的慢性放射性直肠损伤临床治疗转归:85例回顾性分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 466-472.
[11] 邱红生, 林树体, 梁朝莹, 劳世高, 何荷. 模拟现实步态训练对膝关节前交叉韧带损伤的功能恢复及对跌倒恐惧的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 343-350.
[12] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[13] 孙秀艳, 徐庆蕾, 马鹏涛, 胡志元, 郭传真, 祝成红. 腹腔镜胃癌根治术中患者体温变化与压力性损伤及受压部位微环境的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 480-484.
[14] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[15] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
阅读次数
全文


摘要