切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2023, Vol. 18 ›› Issue (06) : 533 -537. doi: 10.3877/cma.j.issn.1673-9450.2023.06.015

综述

放射性皮肤损伤治疗的研究进展
韩李念, 王君()   
  1. 232000 安徽理工大学第一附属医院 淮南市第一人民医院烧伤整形科
  • 收稿日期:2023-06-22 出版日期:2023-12-01
  • 通信作者: 王君

Advances in the treatment of radiation-induced skin injury

Linian Han, Jun Wang()   

  1. Department of Burn and Plastic, the First Affiliated Hospital of Anhui University of Science and Technology, Huainan First People's Hospital, Huainan 232000, China
  • Received:2023-06-22 Published:2023-12-01
  • Corresponding author: Jun Wang
引用本文:

韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.

Linian Han, Jun Wang. Advances in the treatment of radiation-induced skin injury[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(06): 533-537.

放射治疗已成为一系列恶性肿瘤治疗方案中不可或缺的重要组成部分,超过70%的恶性肿瘤患者需要放射治疗。虽然放射治疗可以有效治疗肿瘤,但对肿瘤周边健康组织的附带损伤,不仅会延迟肿瘤治疗进展,且严重影响患者的生活质量。放射性皮肤损伤(RSI)为最常见的放射治疗并发症,做好对症防治尤为重要。本文总结近年来RSI的治疗进展,并展望今后的实验研究和临床治疗方向。

Radiotherapy has become an integral part of the treatment regimen for malignant tumors, more than 70% patients with malignant tumors require radiotherapy. Although radiotherapy can effectively treat tumors, collateral damage to the healthy tissues surrounding the tumor will not only delay the progress of tumor treatment, but also seriously affect the life quality of patients. Radiation-induced skin injury (RSI) is the most common complication of radiotherapy, and it is particularly important for symptomatic prevention and treatment.This article summarizes the recent progress of RSI treatment, and looks forward to the future direction of experimental research and clinical treatment.

[1]
Leventhal J, Young MR. Radiation dermatitis: recognition, prevention, and management[J]. Oncology (Williston Park), 2017, 31(12): 885-887; 885-887, 894-899.
[2]
Wang Y, Tu W, Tang Y, et al. Prevention and treatment for radiation-induced skin injury during radiotherapy[J]. Radiat Med Protec, 2020, 1(2): 60-68.
[3]
Barker HE, Paget JT, Khan AA, et al. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence[J]. Nat Rev Cancer, 2015, 15(7): 409-425.
[4]
Rosenthal RA, Fish B, Hill RP, et al. Salen Mn complexes mitigate radiation injury in normal tissues[J]. Anticancer Agents Med Chem, 2011, 11(4): 359-372.
[5]
Wang X, Lu Y, Cheng X, et al. Local multiple-site injections of a plasmid harboring human MnSOD mitigate radiation-induced skin injury by inhibiting ferroptosis[J]. Curr Drug Deliv, 2023.
[6]
Wei J, Zhao Q, Zhang Y, et al. Sulforaphane-mediated Nrf2 activation prevents radiation-induced skin injury through inhibiting the oxidative-stress-activated DNA damage and NLRP3 inflammasome[J]. Antioxidants (Basel), 2021, 10(11): 1850.
[7]
Wu T, Gao J, Liu W, et al. NLRP3 protects mice from radiation-induced colon and skin damage via attenuating cGAS-STING signaling[J]. Toxicol Appl Pharmacol, 2021, 418: 115495.
[8]
Pham N, Ludwig MS, Wang M, et al. Topical esomeprazole mitigates radiation-induced dermal inflammation and fibrosis[J]. Radiat Res, 2019, 192(5): 473-482.
[9]
Schmidlin CJ, Rojo de la Vega M, Perer J, et al. Activation of NRF2 by topical apocarotenoid treatment mitigates radiation-induced dermatitis[J]. Redox Biol, 2020, 37: 101714.
[10]
Sun C, Song B, Sheng W, et al. Fenofibrate attenuates radiation-induced oxidative damage to the skin through fatty acid binding protein 4 (FABP4)[J]. Front Biosci (Landmark Ed), 2022, 27(7): 214.
[11]
Cao J, Zhong L, Feng Y, et al. Activated beta-catenin signaling ameliorates radiation-induced skin injury by suppressing marvel D3 expression[J]. Radiat Res, 2021, 95(2): 173-190.
[12]
Wang Z, Chen Z, Jiang Z, et al. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents[J]. Nat Commun, 2019, 10(1): 2538.
[13]
Wang H, Wang Z, Huang Y, et al. Senolytics (DQ) mitigates radiation ulcers by removing senescent cells[J]. Front Oncol, 2019, 9: 1576.
[14]
Su W, Chen X, Zhang W, et al. Therapeutic targets and signaling mechanisms of dasatinib activity against radiation skin ulcer[J]. Front Public Health, 2022, 10: 1031038.
[15]
Park M, Na J, Kwak SY, et al. Zileuton alleviates radiation-induced cutaneous ulcers via inhibition of senescence-associated secretory phenotype in rodents[J]. Int J Mol Sci, 2022, 23(15): 8390.
[16]
Tevlin R, Longaker MT, Wan DC. Deferoxamine to minimize fibrosis during radiation therapy[J]. Adv Wound Care (New Rochelle), 2022, 11(10): 548-559.
[17]
Kim JH, Nam JK, Kim AR, et al. 2-methoxyestradiol inhibits radiation-induced skin injuries[J]. Int J Mol Sci, 2022, 3(8): 4171.
[18]
Cao J, Zhu W, Yu D, et al. The involvement of SDF-1α/CXCR4 axis in radiation-induced acute injury and fibrosis of skin[J]. Radiat Res, 2019, 192(4): 410-421.
[19]
Qiu Y, Gao Y, Yu D, et al. Genome-wide analysis reveals Zinc transporter ZIP9 regulated by DNA methylation promotes radiation-induced skin fibrosis via the TGF-β signaling pathway[J]. J Invest Dermatol, 2020, 140(1): 94-102.
[20]
Fallah M, Shen Y, Brodén J, et al. Plasminogen activation is required for the development of radiation-induced dermatitis[J]. Cell Death Dis, 2018, 9(11): 1051.
[21]
Deleon NMD, Adem S, Lavin CV, et al. Angiogenic CD34CD146adipose-derived stromal cells augment recovery of soft tissue after radiotherapy[J]. J Tissue Eng Regen Med, 2021, 15(12): 1105-1117.
[22]
Borrelli MR, Patel RA, Adem S, et al. The antifibrotic adipose-derived stromal cell: grafted fat enriched with CD74adipose-derived stromal cells reduces chronic radiation-induced skin fibrosis[J]. Stem Cells Transl Med, 2020, 9(11): 1401-1413.
[23]
Rautiainen S, Laaksonen T, Koivuniemi R. Angiogenic effects and crosstalk of adipose-derived mesenchymal stem/stromal cells and their extracellular vesicles with endothelial cells[J]. Int J Mol Sci, 2021, 22(19): 10890.
[24]
Adem S, Abbas DB, Lavin CV, et al. Decellularized adipose matrices can alleviate radiation-induced skin fibrosis[J]. Adv Wound Care (New Rochelle), 2022, 11(10): 524-536.
[25]
Yao C, Zhou Y, Wang H, et al. Adipose-derived stem cells alleviate radiation-induced dermatitis by suppressing apoptosis and downregulating cathepsin F expression[J]. Stem Cell Res Ther, 2021, 12(1): 447.
[26]
Lee J, Jang H, Park S, et al. Platelet-rich plasma activates AKT signaling to promote wound healing in a mouse model of radiation-induced skin injury[J]. J Transl Med, 2019, 17(1): 295.
[27]
Tian K, Ye J, Zhong Y, et al. Autologous I-PRF promotes healing of radiation-induced skin injury[J]. Wound Repair Regen, 2023, 31(4): 454-463.
[28]
Bertrand B, Eraud J, Velier M, et al. Supportive use of platelet-rich plasma and stromal vascular fraction for cell-assisted fat transfer of skin radiation-induced lesions in nude mice[J]. Burns, 2020, 46(7): 1641-1652.
[29]
Mao Y, Tao R, Cao X, et al. Innate lymphoid cells regulate radiation-induced skin damage via CCR10 signaling[J]. Int J Radiat Biol, 2020, 96(9): 1157-1164.
[30]
Kulshrestha S, Chawla R, Singh S, et al. Protection of sildenafil citrate hydrogel against radiation-induced skin wounds[J]. Burns, 2020, 46(5): 1157-1169.
[31]
Hao Y, Li H, Guo J, et al. Bio-inspired antioxidant heparin-mimetic peptide hydrogel for radiation-induced skin injury repair[J]. Adv Healthc Mater, 2023, 12(20): e2203387.
[32]
Hao J, Sun M, Li D, et al. An IFI6-based hydrogel promotes the healing of radiation-induced skin injury through regulation of the HSF1 activity[J]. J Nanobiotechnology, 2022, 20(1): 288.
[33]
Feng Z, Zhang Y, Yang C, et al. Bioinspired and inflammation-modulatory glycopeptide hydrogels for radiation-induced chronic skin injury repair[J]. Adv Healthc Mater, 2023, 12(1): e2201671.
[34]
Widjaja SS, Sumantri IB, Rusdiana R, et al. Potential benefits of aloe vera and raphanus sativus var. longipinnatus gel for prevention of radiation-induced dermatitis in head and neck cancer patients[J]. Iran J Pharm Res, 2023, 21(1): e132213.
[35]
Winaikosol K, Punyavong P, Jenwitheesuk K, et al. Radiation ulcer treatment with hyperbaric oxygen therapy and haemoglobin spray: case report and literature review[J]. J Wound Care, 2020, 29(8): 452-456.
[36]
Krasnoselskyi MV, Pushkar ES, Simonova-Pushkar LI, et al. Nitric oxide metabolism features under conditions of experimental infected radiation-induced skin injuries development and their treatment with photodynamic therapy[J]. Wiad Lek2020, 73(8): 1655-1658.
[37]
Krasnoselsky MV, Simonova LI, Gertman VZ, et al. Tissue immune cells and their role in the healing process of infected radiation ulcers under the impact of photodynamic therapy (experimental study)[J]. Probl Radiac Med Radiobiol, 2019, 24: 250-260.
[38]
Wei L, Zhang J, Xiao X, et al. Multiple injections of human umbilical cord-derived mesenchymal stromal cells through the tail vein improve microcirculation and themicroenvironment in a rat model of radiation myelopathy[J]. J Transl Med, 2014, 12(1): 246.
[1] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[2] 许正文, 李振, 侯振扬, 苏长征, 朱彪. 富血小板血浆联合植骨治疗早期非创伤性股骨头坏死[J]. 中华关节外科杂志(电子版), 2023, 17(06): 773-779.
[3] 欧阳剑锋, 李炳权, 叶永恒, 胡少宇, 向阳. 关节镜联合富血小板血浆治疗粘连性肩周炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 765-772.
[4] 王泽勇, 覃健. 白细胞含量对富血小板血浆治疗运动系统损伤的影响[J]. 中华关节外科杂志(电子版), 2023, 17(05): 684-688.
[5] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[6] 詹钦文, 靳科, 袁家钦. 不同浓度自体富血小板血浆对慢性跟腱损伤的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(04): 500-507.
[7] 邬春虎, 马玉海, 陈长松, 尹华东, 朱晓峰, 何剑星, 刘彧. 冲击波联合富血小板血浆对骨关节炎软骨损伤的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(03): 334-339.
[8] 贾星海, 张超, 林岩. 富血小板血浆对膝软骨损伤术后功能康复的影响[J]. 中华关节外科杂志(电子版), 2023, 17(01): 141-146.
[9] 郭姗姗, 朱磊, 刘柳, 高燕, 梁应凤, 朱丽娜, 张丹, 张涛. 对放射性皮肤损伤链式管理模式联合结构化皮肤干预的临床疗效分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 306-311.
[10] 祁焕康, 包俊杰, 张婧, 田琰, 卓么加, 祁万乐. 富血小板血浆联合微粒皮移植在高原地区老年慢性小创面中的临床研究[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 32-38.
[11] 张欢桐, 周翰, 沈新, 林星辰, 孙怡亦, 周义, 张大勇. 细胞衰老与移植疗效研究进展[J]. 中华移植杂志(电子版), 2022, 16(06): 379-383.
[12] 胡国政, 刘飞, 徐丛, 吕剑, 王巍. 肩袖修补术联合足印区注射富血小板血浆的疗效分析[J]. 中华肩肘外科电子杂志, 2023, 11(02): 111-116.
[13] 马聪, 李雪靖, 郑晓佐, 张晓阳, 段坤峰, 刘国强, 郄素会. 关节腔内注射富血小板血浆与透明质酸钠治疗Ⅰ-Ⅲ期膝骨关节炎的对比研究[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 282-288.
[14] 刘晓南, 余斌. 细胞衰老在骨代谢及退行性疾病中的研究进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(02): 113-119.
[15] 苗壮, 刘培来. 富血小板血浆治疗膝骨关节炎的现状与展望[J]. 中华临床医师杂志(电子版), 2023, 17(01): 1-6.
阅读次数
全文


摘要