切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2019, Vol. 14 ›› Issue (01) : 26 -33. doi: 10.3877/cma.j.issn.1673-9450.2019.01.006

所属专题: 文献

论著

猪脱细胞真皮基质对小鼠创面毛囊再生中基质细胞衍生因子-1及Wnt3a/β-catenin信号通路表达的影响
杜烨1, 冯自波1, 李恭驰2, 邹利军1, 杨鸿1, 王知1, 陈江海2, 潘银根3, 李炳辉1,()   
  1. 1. 430077 武汉,华中科技大学同济医学院附属梨园医院创面修复科
    2. 430022 武汉,华中科技大学同济医学院附属协和医院手外科
    3. 226200 启东市人民医院整形美容科
  • 收稿日期:2018-12-05 出版日期:2019-02-01
  • 通信作者: 李炳辉
  • 基金资助:
    湖北省自然科学基金面上项目(2017CKB892)

Effect of porcine acellular dermal matrix on the expression of stromal cell-derived factor-1 and Wnt3a/β-catenin signaling pathway in mice hair follicle regeneration

Ye Du1, Zibo Feng1, Gongchi Li2, Lijun Zou1, Hong Yang1, Zhi Wang1, Jianghai Chen2, Yingen Pan3, Binghui Li1,()   

  1. 1. Department of Wound Repair, Liyuan Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430077, China
    2. Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
    3. Department of Plastic and Beauty, Qidong People′s Hospital, Qidong 226200, China
  • Received:2018-12-05 Published:2019-02-01
  • Corresponding author: Binghui Li
  • About author:
    Corresponding author: Li Binghui, Email:
引用本文:

杜烨, 冯自波, 李恭驰, 邹利军, 杨鸿, 王知, 陈江海, 潘银根, 李炳辉. 猪脱细胞真皮基质对小鼠创面毛囊再生中基质细胞衍生因子-1及Wnt3a/β-catenin信号通路表达的影响[J]. 中华损伤与修复杂志(电子版), 2019, 14(01): 26-33.

Ye Du, Zibo Feng, Gongchi Li, Lijun Zou, Hong Yang, Zhi Wang, Jianghai Chen, Yingen Pan, Binghui Li. Effect of porcine acellular dermal matrix on the expression of stromal cell-derived factor-1 and Wnt3a/β-catenin signaling pathway in mice hair follicle regeneration[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(01): 26-33.

目的

探讨猪脱细胞真皮基质(ADM)对小鼠创面毛囊再生中基质细胞衍生因子-1(SDF-1)及Wnt3a/β-catenin信号通路表达的影响。

方法

取新鲜猪皮,经脱细胞处理后制成微粒状,灭菌,密封,常温保存,以备后面实验使用。制作18只C57BL/6小鼠背部全层皮肤缺损模型,以脊柱为中线,在左右各制作直径为6 mm的缺损,左右侧分别以纱布和猪ADM覆盖,隔天纱布侧换药,猪ADM侧不做处理,于模型建立第7天,按照所用材料不同分为纱布组与猪ADM组,再按所取部位不同分为纱布窗口组、猪ADM窗口组、纱布创面组、猪ADM创面组、纱布创缘组、猪ADM创缘组,其中9只小鼠组织用于蛋白质印迹法检测,另外9只小鼠组织用于免疫组织化学检测。通过蛋白质印迹法检测肿瘤坏死因子-α(TNF-α)、β-catenin、转化生长因子-β(TGF-β)、Wnt3a、血管内皮生长因子(VEGF)、SDF-1、成纤维细胞生长因子(FGF)2、FGF9、AKT的蛋白表达,免疫组织化学检测Wnt3a、SDF-1、FGF2、FGF9的表达。数据比较采用独立样本t检验。

结果

在小鼠模型建立第7天创面中,蛋白质印迹法检测β-catenin、Wnt3a、SDF-1的蛋白表达量均是猪ADM窗口组(0.533±0.058、0.446±0.039、0.972±0.048)高于纱布窗口组(0.401±0.005、0.132±0.022、0.175±0.036),差异均有统计学意义(t=3.996、12.230、23.130,P值均小于0.05)。β-catenin、Wnt3a、SDF-1的蛋白表达量均是猪ADM创面组(0.557±0.009、0.626±0.066、0.868±0.102)高于纱布创面组(0.302±0.010、0.109±0.019、0.036±0.009),差异均有统计学意义(t=32.830、13.020、14.130,P值均小于0.05)。Wnt3a、SDF-1的蛋白表达量均是猪ADM创缘组(0.419±0.014、0.370±0.069)高于纱布创缘组(0.115±0.020、0.056±0.007),差异均有统计学意义(t=21.460、7.825,P值均小于0.05)。免疫组织化学检测结果显示Wnt3a、SDF-1、FGF2、FGF9在猪ADM组中的表达高于纱布组,且阳性细胞主要分布于毛囊细胞周围。

结论

猪ADM在小鼠创面中可能通过上调SDF-1及Wnt3a/β-catenin信号通路的表达而促进毛囊的再生。

Objective

To investigate the effects of porcine acellular dermal matrix (ADM) on the expression of stromal cell-derived factor-1 (SDF-1) and Wnt3a/β-catenin signaling pathway in mouse hair follicle regeneration.

Methods

Fresh pig skin was taken for dermal matrix, and after decellularization treatment was sterilized, sealed, and stored at room temperature for later use. Eighteen full-thickness skin defect models of C57BL/6 mice were made with the spine as the midline, 6 mm diameter defects were made on the left and right sides. Left and right sides were covered with gauze and porcine ADM, respectively. The gauze side dressing changed the next day, but the porcine ADM side did nothing. On the 7th day after the model was established, according to different materials, it was divided into gauze group and porcine ADM group, and then according to the different parts taken divided into gauze window group, porcine ADM window group, gauze wound group, porcine ADM wound group, gauze wound edge group and porcine ADM wound edge group. Tissue of nine mice were taken for Western blotting test protein expressions of tumor necrosis factor-α(TNF-α), β-catenin, transforming growth factor-β(TGF-β), Wnt3a, vascular endothelial growth factor(VEGF), stromalcell derived factor-1(SDF-1), fibroblast growth factor2(FGF2), fibroblast growth factor9(FGF9), AKT. The others were taken for immunohistochemistry for detection of Wnt3a, SDF-1, FGF2, FGF9.Data comparisons were performed using independent sample t test.

Results

In the 7th day wound of mice, Western blotting showed that the protein expression levels of β-catenin, Wnt3a, SDF-1 were higher in porcine ADM window group(0.533±0.058, 0.446±0.039, 0.972±0.048) than the gauze window group (0.401±0.005, 0.132±0.022, 0.175±0.036), and the differences were statistically significant (t=3.996, 12.230, 23.130; with P values below 0.05). The protein expression levels of β-catenin, Wnt3a, SDF-1 were higher in the porcine ADM wound group(0.557±0.009, 0.626±0.066, 0.868±0.102) than in the gauze wound group (0.302±0.010, 0.109±0.019, 0.036±0.009), and the differences were statistically significant (t=32.830, 13.020, 14.130; with P values below 0.05). And the protein expression levels of Wnt3a, SDF-1 in the porcine ADM wound margin group(0.419±0.014, 0.370±0.069) were higher than those in the gauze margin group(0.115±0.020, 0.056±0.007), and the differences were statistically significant (t=21.460, 7.825; with P values below 0.05). Immunohistochemistry results showed that Wnt3a, SDF-1, FGF2 and FGF9 in the porcine ADM group were higher than those in the gauze group, and the positive cells were mainly distributed around hair follicle cells.

Conclusion

In the wound repair process, porcine ADM may promotes the regeneration of hair follicles by up-regulating the expression of SDF-1 and Wnt3a/β-catenin signaling pathway.

图1 小鼠模型建立第7天创面情况。A示硅胶支撑架被缝于创面上;B示去掉硅胶支撑架可见窗口处(箭头示)有肉芽组织
图2 各组全层皮肤缺损创面小鼠在模型建立第7天TNF-α、β-catenin、TGF-β、Wnt3a、VEGF、SDF-1、FGF2、FGF9、AKT的蛋白质分析结果。ADM为脱细胞真皮基质;TNF-α为肿瘤坏死因子-α;TGF-β为转化生长因子-β;VEGF为血管内皮生长因子;SDF-1为基质细胞衍生因子-1;FGF为成纤维细胞生长因子;GAPDH为甘油醛-3-磷酸脱氢酶
表1 纱布窗口组和猪ADM窗口组全层皮肤缺损创面小鼠在模型建立第7天各指标表达量的比较(±s)
表2 纱布创面组和猪ADM创面组全层皮肤缺损创面小鼠在模型建立第7天各指标表达量的比较(±s)
表3 纱布创缘组和猪ADM创缘组全层皮肤缺损创面小鼠在模型建立第7天各指标表达量的比较(±s)
图3 小鼠模型建立第7天,猪ADM组与纱布组创面组织的Wnt3a、SDF-1、FGF2、FGF9免疫组织化学检测结果显示猪ADM组的阳性细胞(箭头示)多于纱布组,且主要分布在毛囊细胞周围(免疫组织化学染色,×200)。ADM为脱细胞真皮基质,SDF-1为基质细胞衍生因子-1,FGF为成纤维细胞生长因子
[1]
Chua AW, Khoo YC, Tan BK, et al. Skin tissue engineering advances in severe burns: review and therapeutic applications[J]. Burns Trauma, 2016, 4: 3.
[2]
Bondioli E, Fini M, Veronesi F, et al. Development and evaluation of decellularized membrane from human dermis[J]. J Tissue Eng Regen Med, 2014, 8(4): 325-336.
[3]
Eming SA, Hubbell JA. Extracellular matrix in angiogenesis: dynamic structures with translational potential[J]. Exp Dermatol, 2011, 20(7): 605-613.
[4]
Yan W, Liu H, Deng X, et al. Acellular dermal matrix scaffolds coated with connective tissue growth factor accelerate diabetic wound healing by increasing fibronectin through PKC signalling pathway[J]. J Tissue Eng Regen Med, 2018, 12(3): e1461-e1473.
[5]
Nie C, Yang D, Morris SF. Local delivery of adipose-derived stem cells via acellular dermal matrix as a scaffold: a new promising strategy to accelerate wound healing[J]. Med Hypotheses, 2009, 72(6): 679-682.
[6]
Sigalove S. Options in Acellular Dermal Matrix-Device Assembly[J]. Plast Reconstr Surg, 2017, 140(6S Prepectoral Breast Reconstruction): 39S-42S.
[7]
Hughes OB, Rakosi A, Macquhae F, et al. A Review of Cellular and Acellular Matrix Products: Indications, Techniques, and Outcomes[J]. Plast Reconstr Surg, 2016, 138(3 Suppl): 138S-147S.
[8]
Zhang Z, Lv L, Mamat M, et al. Xenogenic (porcine) acellular dermal matrix is useful for the wound healing of severely damaged extremities[J]. Exp Therapeutic Med, 2014, 7(3): 621-624.
[9]
王永飞, 程勇, 许喜生. 毛囊干细胞在创面愈合中的应用进展[J]. 现代医药卫生, 2015, 31(4): 548-551.
[10]
Bermudez DM, Xu J, Herdrich BJ, et al. Inhibition of stromal cell-derived factor-1α further impairs diabetic wound healing[J]. J Vasc Surg, 2011, 53(3): 774-784.
[11]
Nusse R. Wnt signaling and stem cell control[J]. Cell Res, 2008, 18(5): 523-527.
[12]
Clevers H, Nusse R. Wnt/β-catenin signaling and disease[J]. Cell, 2012, 149(6): 1192-1205.
[13]
Kishimoto J, Burgeson RE, Morgan1 BA. Wnt signaling maint ains t he hai r-inducing act ivi ty of t he dermal papilla[J]. Genes Dev, 2000, 14(10): 1181-1185.
[14]
Carre AL, James AW, MacLeod L, et al. Interaction of wingless protein (Wnt), transforming growth factor-beta1, and hyaluronan production in fetal and postnatal fibroblasts[J]. Plast Reconstr Surg, 2010, 25(1): 74-88.
[15]
Ito M, Yang Z, Andl T, et al. Wnt-dependent de novo hair follele regeneration in adult mouse skin wound after wounding[J]. Nature, 2007, 447(7142): 316-320.
[16]
Amini-Nik S, Glancy D, Boimer C, et al. Pax7 expressing cells contribute to dermal wound repair, regulating scar size through a β-catenin mediated process[J]. Stem Cells, 2011, 29(9): 1371-1379.
[17]
Kanda S, Miyata Y, Kanetake H. Fibroblast growth factor-2-mediated capillary morphogenesis of endothelial cells requires signals via Flt-1/vascular endothelial growth factor receptor-1: possible involvement of c-Akt[J]. J Biol Chem, 2004, 279(6): 4007-4016.
[18]
Fei Y, Xiao L, Doetschman T, et al. Fibroblast growth factor 2 stimulation of osteoblast differentiation and bone formation is mediated by modulation of the Wnt signaling pathway[J]. J Biol Chem, 2011, 286(47): 40575-40583.
[19]
Hung IH, Yu K, Lavine KJ, et al. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod[J]. Dev Biol, 2007, 307(2): 300-313.
[20]
Giannouli CC, Kletsas D. TGF-beta regulates differentially the proliferation of fetal and adult human skin fibroblasts via the activation of PKA and the autocrine action of FGF-2[J]. Cell Signal, 2006, 18(9): 1417-1429.
[21]
Cheon SS, Wei Q, Gurung A, et al. Beta-catenin regulates wound size and mediates the effect of TGF-beta in cutaneous healing[J]. FASEB J, 2006, 20(6): 692-701.
[22]
Wang X, Chen H, Tian R, et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF[J]. Nat Commun, 2017, 8: 1409.
[1] 李康, 耿喜林, 汪玉良, 刘京升. 踝关节Logsplitter损伤诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 566-570.
[2] 赵宇, 赵松, 赵金忠. 前交叉韧带损伤及重建后继发性膝骨关节炎的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 415-423.
[3] 江钰璇, 陈颖, 周钟明, 温宝泓, 陈文韬, 钟国庆, 张余, 李丽萍. 全身关节过度活动的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(01): 52-59.
[4] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[5] 米洁, 陈晨, 李佳玲, 裴海娜, 张恒博, 李飞, 李东杰. 儿童头面部外伤特点分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 511-515.
[6] 徐庆连. 下肢严重车祸伤创面修复的经验、教训[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 92-92.
[7] 艾紫叶, 李玲, 何重香, 黄伟, 叶啟发. 猪器官异种移植研究进展[J]. 中华移植杂志(电子版), 2023, 17(03): 186-191.
[8] 刘成, 赖聪, 黄健, 王建辰, 罗茜芸, 许可慰. EDGE SP1000单孔手术机器人辅助腹腔镜下猪输尿管部分切除联合端端吻合术的可行性研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 642-646.
[9] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[10] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[11] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[12] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[13] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[14] 梁伟, 王晓彬, 洪笑阳, 蔡明岳, 梁礼聪, 陈烨, 黄培凯, 刘铭宇, 林立腾, 朱康顺. 原位肝癌小鼠微波消融术后复发模型的构建[J]. 中华介入放射学电子杂志, 2023, 11(02): 133-139.
[15] 买买提·依斯热依力, 王永康, 阿巴伯克力·乌斯曼, 克力木·阿不都热依木. 基于16s rRNA测序分析小鼠高脂饮食诱导肥胖的肠道菌群结构特征[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 12-16.
阅读次数
全文


摘要