切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2019, Vol. 14 ›› Issue (02) : 136 -140. doi: 10.3877/cma.j.issn.1673-9450.2019.02.011

所属专题: 文献

综述

皮肤创伤愈合的转录组学研究进展
王涛1,(), 赵娜1, 龙爽1, 汪国建1, 冉新泽1, 粟永萍1   
  1. 1. 400038 重庆,陆军军医大学(第三军医大学)军事预防医学系防原医学教研室,全军复合伤研究所,创伤、烧伤与复合伤国家重点实验室,重庆市纳米医学工程研究中心
  • 收稿日期:2019-02-08 出版日期:2019-04-01
  • 通信作者: 王涛
  • 基金资助:
    国家自然科学基金面上项目(81372061); 重庆市自然科学基金(cstc2016jcyjA0381)

Advances in transcriptomics of cutaneous wound healing

Tao Wang1,(), Na Zhao1, Shuang Long1, Guojian Wang1, Xinze Ran1, Yongping Su1   

  1. 1. Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
  • Received:2019-02-08 Published:2019-04-01
  • Corresponding author: Tao Wang
  • About author:
    Corresponding author: Wang Tao, Email:
引用本文:

王涛, 赵娜, 龙爽, 汪国建, 冉新泽, 粟永萍. 皮肤创伤愈合的转录组学研究进展[J]. 中华损伤与修复杂志(电子版), 2019, 14(02): 136-140.

Tao Wang, Na Zhao, Shuang Long, Guojian Wang, Xinze Ran, Yongping Su. Advances in transcriptomics of cutaneous wound healing[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(02): 136-140.

皮肤创伤愈合涉及到复杂的细胞、分子网络调控,愈合障碍导致的慢性难愈创面和增生性瘢痕是棘手的医学难题。转录组学是在整体水平上研究特定时空细胞中全部基因转录本种类、结构和功能及转录调控规律的学科,其相关技术的发展为研究皮肤创伤愈合不同阶段、不同结局的分子机理和调控网络提供了有力工具。本文就转录组学在皮肤创伤愈合中的应用情况、取得成果等方面的研究进行简要综述,旨在为后续的研究提供参考。

Cutaneous wound healing is involved in complex network interactions at both cellular and molecular levels. Wound healing disorders may result in chronic non-healing wounds or hypertrophic scar, which both are important medical problems in clinical practice. Transcriptomics studies the variety, structure, function and regulation of all transcripts in certain tissue or cells. It provides a powerful procedure for revealing the molecular mechanism and regulatory network of certain healing phases or healing outcomes. This review mainly focused on recent advances in applications and achievements of transcriptomics techniques in analyzing skin wound healing, which will provide reference for following researches.

[1]
Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration [J]. Nature, 2008, 453(7193): 314-321.
[2]
蒋建新,王正国. 后基因组学与创伤医学研究 [J]. 中华创伤杂志,2006, 22(7): 481-485.
[3]
Chambers DC, Carew AM, Lukowski SW, et al. Transcriptomics and single-cell RNA-sequencing [J]. Respirology, 2019, 24(1): 29-36.
[4]
Kester L, van Oudenaarden A. c [J]. Cell Stem Cell, 2018, 23(2): 166-179.
[5]
Auer H, Newsom DL, Kornacker K. Expression profiling using Affymetrix GeneChip Microarrays [J]. Methods Mol Biol, 2009, 509: 35-46.
[6]
Roy S, Khanna S, Rink C, et al. Characterization of the acute temporal changes in excisional murine cutaneous wound inflammation by screening of the wound-edge transcriptome [J]. Physiol Genomics, 2008, 34(2): 162-184.
[7]
Feezor RJ, Paddock HN, Baker HV, et al. Temporal patterns of gene expression in murine cutaneous burn wound healing [J]. Physiol Genomics, 2004, 16(3): 341-348.
[8]
Roy S, Biswas S, Khanna S, et al. Characterization of a preclinical model of chronic ischemic wound [J]. Physiol Genomics, 2009, 37(3): 211-224.
[9]
Price JA, Rogers JV, McDougal JN, et al. Transcriptional changes in porcine skin at 7 days following sulfur mustard and thermal burn injury [J]. Cutan Ocul Toxicol, 2009, 28(3): 129-140.
[10]
Seifert AW, Kiama SG, Seifert MG, et al. Skin shedding and tissue regeneration in African spiny mice (Acomys) [J]. Nature, 2012, 489(7417): 561-565.
[11]
Brant JO, Lopez MC, Baker HV, et al. A comparative analysis of gene expression profiles during skin regeneration in Mus and Acomys [J]. PLoS One, 2015, 10(11): e0142931.
[12]
Gawriluk TR, Simkin J, Thompson KL, et al. Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals [J]. Nat Commun, 2016, 7: 11164.
[13]
Colwell AS, Longaker MT, Peter Lorenz H. Identification of differentially regulated genes in fetal wounds during regenerative repair [J]. Wound Repair Regen, 2008, 16(3): 450-459.
[14]
Hu MS, Hong WX, Januszyk M, et al. Pathway Analysis of Gene Expression in Murine Fetal and Adult Wounds[J]. Adv Wound Care (New Rochelle), 2018, 7(8): 262-275.
[15]
Keyes BE, Liu SQ, Asare A, et al. Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin [J]. Cell, 2016, 167(5): 1323-1338.
[16]
Sextius P, Marionnet C, Tacheau C, et al. Analysis of gene expression dynamics revealed delayed and abnormal epidermal repair process in aged compared to young skin [J]. Arch Dermatol Res, 2015, 307(4): 351-364.
[17]
Chen L, Arbieva ZH, Guo S, et al. Positional differences in the wound transcriptome of skin and oral mucosa [J]. BMC Genomics, 2010; 11: 471.
[18]
Iglesias-Bartolome R, Uchiyama A, Molinolo AA, et al. Transcriptional signature primes human oral mucosa for rapid wound healing [J]. Sci Transl Med, 2018, 10(451): eaap8798.
[19]
Sass PA, Dabrowski M, Charzynska A, et al. Transcriptomic responses to wounding: meta-analysis of gene expression microarry data [J]. BMC Genomics, 2017, 18(1): 850.
[20]
Leffler M, Derrick KL, McNulty A, et al. Changes of anabolic processes at the cellular and molecular level in chronic wounds under topical negative pressure can be revealed by transcriptome analysis [J]. J Cell Mol Med, 2011, 15(7): 1564-1571.
[21]
Stone RC, Stojadinovic O, Rosa AM, et al. A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers [J]. Sci Transl Med, 2017, 9(371): eaaf8611.
[22]
Pedersen TX, Leethanakul C, Patel V, et al. Laser capture microdissection-based in vivo genomic profiling of wound keratinocytes identifies similarities and differences to squamous cell carcinoma [J]. Oncogene, 2003, 22(25): 3964-3976.
[23]
Ramirez HA, Liang L, Pastar I, et al. Comparative genomic, microRNA, and tissure analyses reveal subtle differences between non-diabetic and diabetic foot skin [J]. PLoS One, 2015, 10(8): e0137133.
[24]
Roy S, Patel D, Khanna S, et al. Transcriptome-wide analysis of blood vessels laser captured from human skin and chronic wound-edge tissue [J]. Proc Natl Acad Sci U S A, 2007, 104(36): 14472-14477.
[25]
Bronneke S, Bruckner B, Sohle J, et al. Genome-wide expression analysis of wounded skin reveals novel genes involved in angiogenesis [J]. Angiogenesis, 2015, 18(3): 361-371.
[26]
Biernaskie J, Paris M, Morozova O, et al. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells [J]. Cell Stem Cell, 2009, 5(6): 610-623.
[27]
Joost S, Jacob T, Sun X, et al. Single-cell transcriptomics of traced epidermal and hair follicle stem cells reveals rapid adaptations during wound healing [J]. Cell Rep, 2018, 25(3): 585-597.
[28]
Wang T, Feng Y, Sun H, et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process [J]. Am J Pathol, 2012, 181(6): 1911-1920.
[29]
Wang T, Zhao N, Long S, et al. Downregulation of miR-205 in migrating epithelial tongue facilitates skin wound re-epithelialization by derepressing ITGA5 [J]. BBA-Mol Basis Dis, 2016, 1862(8): 1443-1452.
[30]
Li D, Wang A, Liu X, et al. MicroRNA-132 enhances transition from inflammation to proliferation during wound healing [J]. J Clin Invest, 2015, 125(8): 3008-3026.
[31]
Aunin E, Broadley D, Ahmed MI, et al. Exploring a role for regulatory miRNAs in wound healing during ageing: involvement of miR-200c in wound repair [J]. Sci Rep, 2017, 7(1): 3257.
[32]
Guo L, Xu K, Yan H, et al. MicroRNA expression signature and the therapeutic effect of the microRNA-21 antagomir in hypertrophic scarring [J]. Mol Med Rep, 2017, 15(3): 1211-1221.
[33]
Liu Y, Yang D, Xiao Z, et al. miRNA expression profiles in keloid tissue and corresponding normal skin tissue [J]. Aesthetic Plast Surg, 2012, 36(1): 193-201.
[1] 刘镭, 杨昕, 许晓华, 林胜谋, 熊初琴, 农丽录, 董振宇, 李胜利. 中孕期胎儿鼻前皮肤厚度及鼻骨长度筛查胎儿染色体病的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(05): 506-510.
[2] 浦路桥, 齐保闯, 唐志方, 叶涛, 邢丹, 钱东阳, 施洪鑫, 徐永清, 李川. 中国骨关节炎外用药物临床实践指南计划书[J]. 中华关节外科杂志(电子版), 2023, 17(02): 161-164.
[3] 朴广昊, 李屹洲, 刘瑞, 赵建民, 王凌峰. 皮肤撕脱伤撕脱皮瓣活力早期评估与修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 528-532.
[4] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[5] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[6] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[7] 郭姗姗, 朱磊, 刘柳, 高燕, 梁应凤, 朱丽娜, 张丹, 张涛. 对放射性皮肤损伤链式管理模式联合结构化皮肤干预的临床疗效分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 306-311.
[8] 麻艺群, 刘巍敏, 张梦思, 朱辉, 范鑫, 付晋凤. 对腹股沟区全厚皮片修复儿童皮肤缺损的疗效观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 235-240.
[9] 李峰, 黎君友, 冯书堂, 李国平, 杨洁蓉. 对GGTA1/β4GalNT2双基因敲除近交系五指山小型猪皮进行异种移植的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 241-248.
[10] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[11] 王湘, 陈良熠, 虞烽伟, 王正熙, 李秋彤, 李玉红. 骨形态发生蛋白在皮肤创面修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 101-107.
[12] 杨小周, 赵华栋. N6-甲基腺苷表观转录组学在原发性肝癌中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 239-242.
[13] 乔小梅, 孔凯丽, 方敬爱, 张晓东. "肠-皮肤轴"与尿毒症皮肤病变的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 291-294.
[14] 孙昕, 程海波, 沈卫星. 基于全转录组学探讨仙连解毒方治疗Ⅲ期结直肠癌患者的疗效机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 277-283.
[15] 李锦亮, 曾茂娟, 钟金宝, 何伟强, 林文新. 司美格鲁肽对肥胖2型糖尿病患者皮肤微循环功能的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 192-196.
阅读次数
全文


摘要