切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2019, Vol. 14 ›› Issue (02) : 136 -140. doi: 10.3877/cma.j.issn.1673-9450.2019.02.011

所属专题: 文献

综述

皮肤创伤愈合的转录组学研究进展
王涛1,(), 赵娜1, 龙爽1, 汪国建1, 冉新泽1, 粟永萍1   
  1. 1. 400038 重庆,陆军军医大学(第三军医大学)军事预防医学系防原医学教研室,全军复合伤研究所,创伤、烧伤与复合伤国家重点实验室,重庆市纳米医学工程研究中心
  • 收稿日期:2019-02-08 出版日期:2019-04-01
  • 通信作者: 王涛
  • 基金资助:
    国家自然科学基金面上项目(81372061); 重庆市自然科学基金(cstc2016jcyjA0381)

Advances in transcriptomics of cutaneous wound healing

Tao Wang1,(), Na Zhao1, Shuang Long1, Guojian Wang1, Xinze Ran1, Yongping Su1   

  1. 1. Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
  • Received:2019-02-08 Published:2019-04-01
  • Corresponding author: Tao Wang
  • About author:
    Corresponding author: Wang Tao, Email:
引用本文:

王涛, 赵娜, 龙爽, 汪国建, 冉新泽, 粟永萍. 皮肤创伤愈合的转录组学研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2019, 14(02): 136-140.

Tao Wang, Na Zhao, Shuang Long, Guojian Wang, Xinze Ran, Yongping Su. Advances in transcriptomics of cutaneous wound healing[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(02): 136-140.

皮肤创伤愈合涉及到复杂的细胞、分子网络调控,愈合障碍导致的慢性难愈创面和增生性瘢痕是棘手的医学难题。转录组学是在整体水平上研究特定时空细胞中全部基因转录本种类、结构和功能及转录调控规律的学科,其相关技术的发展为研究皮肤创伤愈合不同阶段、不同结局的分子机理和调控网络提供了有力工具。本文就转录组学在皮肤创伤愈合中的应用情况、取得成果等方面的研究进行简要综述,旨在为后续的研究提供参考。

Cutaneous wound healing is involved in complex network interactions at both cellular and molecular levels. Wound healing disorders may result in chronic non-healing wounds or hypertrophic scar, which both are important medical problems in clinical practice. Transcriptomics studies the variety, structure, function and regulation of all transcripts in certain tissue or cells. It provides a powerful procedure for revealing the molecular mechanism and regulatory network of certain healing phases or healing outcomes. This review mainly focused on recent advances in applications and achievements of transcriptomics techniques in analyzing skin wound healing, which will provide reference for following researches.

[1]
Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration [J]. Nature, 2008, 453(7193): 314-321.
[2]
蒋建新,王正国. 后基因组学与创伤医学研究 [J]. 中华创伤杂志,2006, 22(7): 481-485.
[3]
Chambers DC, Carew AM, Lukowski SW, et al. Transcriptomics and single-cell RNA-sequencing [J]. Respirology, 2019, 24(1): 29-36.
[4]
Kester L, van Oudenaarden A. c [J]. Cell Stem Cell, 2018, 23(2): 166-179.
[5]
Auer H, Newsom DL, Kornacker K. Expression profiling using Affymetrix GeneChip Microarrays [J]. Methods Mol Biol, 2009, 509: 35-46.
[6]
Roy S, Khanna S, Rink C, et al. Characterization of the acute temporal changes in excisional murine cutaneous wound inflammation by screening of the wound-edge transcriptome [J]. Physiol Genomics, 2008, 34(2): 162-184.
[7]
Feezor RJ, Paddock HN, Baker HV, et al. Temporal patterns of gene expression in murine cutaneous burn wound healing [J]. Physiol Genomics, 2004, 16(3): 341-348.
[8]
Roy S, Biswas S, Khanna S, et al. Characterization of a preclinical model of chronic ischemic wound [J]. Physiol Genomics, 2009, 37(3): 211-224.
[9]
Price JA, Rogers JV, McDougal JN, et al. Transcriptional changes in porcine skin at 7 days following sulfur mustard and thermal burn injury [J]. Cutan Ocul Toxicol, 2009, 28(3): 129-140.
[10]
Seifert AW, Kiama SG, Seifert MG, et al. Skin shedding and tissue regeneration in African spiny mice (Acomys) [J]. Nature, 2012, 489(7417): 561-565.
[11]
Brant JO, Lopez MC, Baker HV, et al. A comparative analysis of gene expression profiles during skin regeneration in Mus and Acomys [J]. PLoS One, 2015, 10(11): e0142931.
[12]
Gawriluk TR, Simkin J, Thompson KL, et al. Comparative analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals [J]. Nat Commun, 2016, 7: 11164.
[13]
Colwell AS, Longaker MT, Peter Lorenz H. Identification of differentially regulated genes in fetal wounds during regenerative repair [J]. Wound Repair Regen, 2008, 16(3): 450-459.
[14]
Hu MS, Hong WX, Januszyk M, et al. Pathway Analysis of Gene Expression in Murine Fetal and Adult Wounds[J]. Adv Wound Care (New Rochelle), 2018, 7(8): 262-275.
[15]
Keyes BE, Liu SQ, Asare A, et al. Impaired epidermal to dendritic T cell signaling slows wound repair in aged skin [J]. Cell, 2016, 167(5): 1323-1338.
[16]
Sextius P, Marionnet C, Tacheau C, et al. Analysis of gene expression dynamics revealed delayed and abnormal epidermal repair process in aged compared to young skin [J]. Arch Dermatol Res, 2015, 307(4): 351-364.
[17]
Chen L, Arbieva ZH, Guo S, et al. Positional differences in the wound transcriptome of skin and oral mucosa [J]. BMC Genomics, 2010; 11: 471.
[18]
Iglesias-Bartolome R, Uchiyama A, Molinolo AA, et al. Transcriptional signature primes human oral mucosa for rapid wound healing [J]. Sci Transl Med, 2018, 10(451): eaap8798.
[19]
Sass PA, Dabrowski M, Charzynska A, et al. Transcriptomic responses to wounding: meta-analysis of gene expression microarry data [J]. BMC Genomics, 2017, 18(1): 850.
[20]
Leffler M, Derrick KL, McNulty A, et al. Changes of anabolic processes at the cellular and molecular level in chronic wounds under topical negative pressure can be revealed by transcriptome analysis [J]. J Cell Mol Med, 2011, 15(7): 1564-1571.
[21]
Stone RC, Stojadinovic O, Rosa AM, et al. A bioengineered living cell construct activates an acute wound healing response in venous leg ulcers [J]. Sci Transl Med, 2017, 9(371): eaaf8611.
[22]
Pedersen TX, Leethanakul C, Patel V, et al. Laser capture microdissection-based in vivo genomic profiling of wound keratinocytes identifies similarities and differences to squamous cell carcinoma [J]. Oncogene, 2003, 22(25): 3964-3976.
[23]
Ramirez HA, Liang L, Pastar I, et al. Comparative genomic, microRNA, and tissure analyses reveal subtle differences between non-diabetic and diabetic foot skin [J]. PLoS One, 2015, 10(8): e0137133.
[24]
Roy S, Patel D, Khanna S, et al. Transcriptome-wide analysis of blood vessels laser captured from human skin and chronic wound-edge tissue [J]. Proc Natl Acad Sci U S A, 2007, 104(36): 14472-14477.
[25]
Bronneke S, Bruckner B, Sohle J, et al. Genome-wide expression analysis of wounded skin reveals novel genes involved in angiogenesis [J]. Angiogenesis, 2015, 18(3): 361-371.
[26]
Biernaskie J, Paris M, Morozova O, et al. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells [J]. Cell Stem Cell, 2009, 5(6): 610-623.
[27]
Joost S, Jacob T, Sun X, et al. Single-cell transcriptomics of traced epidermal and hair follicle stem cells reveals rapid adaptations during wound healing [J]. Cell Rep, 2018, 25(3): 585-597.
[28]
Wang T, Feng Y, Sun H, et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process [J]. Am J Pathol, 2012, 181(6): 1911-1920.
[29]
Wang T, Zhao N, Long S, et al. Downregulation of miR-205 in migrating epithelial tongue facilitates skin wound re-epithelialization by derepressing ITGA5 [J]. BBA-Mol Basis Dis, 2016, 1862(8): 1443-1452.
[30]
Li D, Wang A, Liu X, et al. MicroRNA-132 enhances transition from inflammation to proliferation during wound healing [J]. J Clin Invest, 2015, 125(8): 3008-3026.
[31]
Aunin E, Broadley D, Ahmed MI, et al. Exploring a role for regulatory miRNAs in wound healing during ageing: involvement of miR-200c in wound repair [J]. Sci Rep, 2017, 7(1): 3257.
[32]
Guo L, Xu K, Yan H, et al. MicroRNA expression signature and the therapeutic effect of the microRNA-21 antagomir in hypertrophic scarring [J]. Mol Med Rep, 2017, 15(3): 1211-1221.
[33]
Liu Y, Yang D, Xiao Z, et al. miRNA expression profiles in keloid tissue and corresponding normal skin tissue [J]. Aesthetic Plast Surg, 2012, 36(1): 193-201.
[1] 杨倩, 李秋洋, 李楠, 罗渝昆, 唐杰. 基于超声纹理影像转录组学预测前列腺癌[J/OL]. 中华医学超声杂志(电子版), 2024, 21(03): 319-326.
[2] 费一鸣, 刘卓, 张丽娟. 组学分析在早产分子机制中的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 504-510.
[3] 顾盼盼, 董传莉, 宋梦瑶, 瞿色华, 杨小迪, 周瑞. 不完全性川崎病患儿临床特征及冠状动脉损害情况分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 446-451.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 卢玉祥, 任尊, 蔡伟杰, 卢玉, 吴恒, 徐峥宇, 韩培. 人工真皮结合刃厚皮片一期移植与中厚皮片移植修复皮瓣供区的比较分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(03): 223-230.
[6] 季超, 马艺程, 贾倩倩, 徐达圆, 纪世召, 肖仕初. 自体表皮细胞扩增体系创新与临床应用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 92-92.
[7] 蒙礼娟, 麻艺群, 王璐, 张梦思, 范鑫, 许水淋, 杨丽红, 朱辉, 付晋凤. 采用SRT-100放射治疗儿童增生性瘢痕的临床疗效初探[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 16-23.
[8] 苏菲, 贾立群, 滕峰, 熊英, 高立伟, 张富强, 何凤娟, 夏莎莎, 刘春燕, 娄彦妮. 溃疡油联合复方维生素B12溶液外用防治放射性皮肤损伤的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 51-56.
[9] 李峰, 黎君友, 冯书堂, 李国平, 戴一凡. 冻存GGTA1/β4GalNT2双基因敲除近交系五指山小型猪猪皮异种移植的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 61-67.
[10] 程宇欣, 张伟, 孔维诗, 孙瑜. 胶原蛋白敷料在创面修复中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 73-77.
[11] 张剑, 卢从华, 李江华, 林采余, 吴迪, 王治国, 聂乃夫, 何勇, 李力. 根据转录组学分析奥希替尼获得性耐药机制的研究[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 195-200.
[12] 杨翔, 郭兰骐, 谢剑锋, 邱海波. 转录组学在脓毒症诊疗中的临床研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 384-388.
[13] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
[14] 赵喜迎, 吴贝贝, 叶敬成, 孙炳伟, 谢尔凡. 滥用外用药物所致重度大面积皮肤溃疡伴全身炎症反应综合征一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 328-332.
[15] 轩欢欢, 刘凤麟, 李伟, 李自普, 贾宝俊, 王金菊, 满宜刚. 儿童川崎病休克综合征合并可逆性胼胝体压部病变综合征的诊断学特征并文献复习[J/OL]. 中华诊断学电子杂志, 2024, 12(02): 95-100.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?