切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2019, Vol. 14 ›› Issue (03) : 166 -173. doi: 10.3877/cma.j.issn.1673-9450.2019.03.002

所属专题: 文献

论著

人Ⅰ型胶原包被培养板不同时间对人原代表皮细胞培养的影响
徐圣博1, 王鑫2, 申传安1,(), 郑波1   
  1. 1. 100048 北京,解放军总医院第四医学中心烧伤整形科
    2. 714000 渭南市中心医院急诊科
  • 收稿日期:2019-03-05 出版日期:2019-06-01
  • 通信作者: 申传安
  • 基金资助:
    国家自然科学基金(81641090); 国家重点研发计划项目(2017YFC1103503); 北京市自然科学基金(7171009); 北京市科技计划项目(Z171100001017146)

Effects of different culture plates coating time on human primary epidermal cells culture with human type Ⅰ collagen

Shengbo Xu1, Xin Wang2, Chuan′an Shen1,(), Bo Zheng1   

  1. 1. Department of Burns and Plastic Surgery, Fourth Medical Center of PLA General Hospital, Beijing 100048, China
    2. Department of Emergency, Weinan Central Hospital, Weinan 714000, China
  • Received:2019-03-05 Published:2019-06-01
  • Corresponding author: Chuan′an Shen
  • About author:
    Corresponding author: Shen Chuan′an, Email:
引用本文:

徐圣博, 王鑫, 申传安, 郑波. 人Ⅰ型胶原包被培养板不同时间对人原代表皮细胞培养的影响[J]. 中华损伤与修复杂志(电子版), 2019, 14(03): 166-173.

Shengbo Xu, Xin Wang, Chuan′an Shen, Bo Zheng. Effects of different culture plates coating time on human primary epidermal cells culture with human type Ⅰ collagen[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(03): 166-173.

目的

探索人Ⅰ型胶原包被培养板不同时间对培养的人原代表皮细胞形态、黏附、增殖、迁移率及细胞周期的影响。

方法

取来源于解放军总医院第四医学中心泌尿外科新鲜人体皮肤组织标本,配置体积分数为1%的人Ⅰ型胶原蛋白溶液并包被培养板,按包被时间不同分为10 s组、1 min组、5 min组、15 min组、30 min组及0 s组,采用胰蛋白酶动态消化法消化分离表皮细胞,接种于不同胶原包被时间的培养板中,加入表皮细胞培养基(CnT-Pr培养基)于37 ℃、含5%CO2的细胞培养箱中培养。倒置相差显微镜下观察细胞形态,细胞计数试剂盒8(CCK-8)法检测细胞黏附及增殖,划痕实验观察细胞迁移,流式细胞法检测细胞周期。对数据行方差分析与LSD-t检验。

结果

(1)细胞数量及形态:随时间推移,各包被组细胞形态未见明显差异,大小较均匀,呈球形或眼型,细胞数量逐渐增多。0 s组细胞数量较其他5组少且未贴壁细胞比例多。(2)细胞黏附:人原代表皮细胞接种后24 h,10 s组、1 min组、5 min组、15 min组、30 min组、0 s组的吸光度值分别为0.28±0.07、0.30±0.05、0.33±0.06、0.34±0.07、0.36±0.05、0.16±0.02,6组间比较,差异有统计学意义(F=4.640,P=0.014);10 s组、1 min组、5 min组、15 min组、30 min组组间两两比较,差异均无统计学意义(P值均大于0.05)。0 s组分别与10 s组、1 min组、5 min组、15 min组、30 min组比较,差异均有统计学意义(t=2.640、3.059、3.584、3.889、4.187,P=0.021、0.010、0.004、0.002、0.001)。(3)细胞增殖:人原代表皮细胞增殖曲线显示胶原包被的各组细胞增殖情况相似,明显高于0 s组细胞增殖情况。细胞接种后2 d,10 s组、1 min组、5 min组、15 min组、30 min组及0 s组的细胞吸光度值分别为0.41±0.05、0.41±0.02、0.46±0.06、0.49±0.08、0.53±0.12、0.09±0.04,6组间比较,差异有统计学意义(F=16.050,P<0.05)。组间两两比较可以发现,10 s组、1 min组、5 min组、15 min组、30 min组间差异均无统计学意义(P值均大于0.05)。0 s组分别与10 s组、1 min组、5 min组、15 min组、30 min组比较,差异均有统计学意义(t=0.323、0.323、0.374、0.401、0.440,P值均小于0.05)。细胞接种后4 d,6组间吸光度值比较,差异均有统计学意义(F=9.816,P=0.001);组间两两比较可以发现,10 s组、1 min组、5 min组、15 min组、30 min组间差异均无统计学意义(P值均大于0.05)。0 s组分别与10 s组、1 min组、5 min组、15 min组、30 min组比较,差异均有统计学意义(P值均小于0.05)。细胞接种后6 d,10 s组、1 min组、5 min组、15 min组、30 min组及0 s组的细胞吸光度值分别为2.76±0.20、3.03±0.17、3.03±0.16、3.18±0.17、3.33±0.26、0.53±0.25。(4)细胞迁移划痕后12 h,10 s组、1 min组、5 min组、15 min组、30 min组及0 s组细胞迁移率分别为(15.60±4.11)%,(18.26±6.79)%,(18.09±6.97)%,(18.00±4.70)%,(17.40±5.97)%,(4.05±1.71)%;划痕后24 h,10 s组、1 min组、5 min组、15 min组、30 min组及0 s组细胞迁移率分别为(36.33±5.63)%,(38.45±11.97)%,(42.36±14.40)%,(41.96±10.78)%,(44.04±12.28)%,(9.17±3.28)%;划痕后36 h,10 s组、1 min组、5 min组、15 min组、30 min组及0 s组细胞迁移率分别为(73.71±17.90)%,(62.33±12.45)%,(69.79±20.82)%,(81.89±18.05)%,(73.49±22.89)%,(11.62±2.64)%。各组间整体比较,差异有统计学意义(F=9.914,P<0.05);不同包被时间各组间进一步比较,可以发现10 s组、1 min组、5 min组、15 min组、30 min组间两两比较,差异均无统计学意义(P值均大于0.05),0 s组分别与10 s组、1 min组、5 min组、15 min组、30 min组比较,差异均有统计学意义(P值均小于0.05)。(5)细胞周期:细胞周期检测结果显示,接种后5 d,各组人原代表皮细胞G1、G2、S期所占比例比较,差异均无统计学意义(P值均大于0.05)。

结论

人Ⅰ型胶原包被对人原代表皮细胞贴壁培养非常必要,胶原包被培养板不同时间对人原代表皮细胞培养无显著影响。

Objective

To explore the effects of different culture plates coating time with human type Ⅰ collagen on the cell morphology, adhesion, proliferation, migration rate and cell cycle of cultured human primary epidermal cells.

Methods

Fresh human skin tissue was taken from Department of Urology Surgery, Fourth Medical Center of PLA General Hospital, then the human type Ⅰ collagen solution with a volume fraction of 1% was placed. Dishes were coating with collagen solution and divided into 10 s group, 1 min group, 5 min group, 15 min group, 30 min group, and 0 s group according to the different coating time. Then epidermal cells were dissociated from skin tissue by dynamic digestion with trypsin, inoculated in culture plates with different collagen coating time and cultured in a cell culture incubator with 5% CO2 at 37 ℃ with epidermal culture medicum (CnT-Pr medium). Then cell morphology was observed under interted phase contrast microscope. Cell adhesion and proliferation were detected using cell counting kit-8 (CCK-8). Cell migration was observed by scratch assay, and cell cycle was detected using flow cytometry. Data were processed with analysis of variance and LSD-t test.

Results

(1)Cell quantity and morphology: there was no significant difference in the morphology of epidermal cells within each group over time. The size of cells in each group were relatively uniform, spherical or eye-shaped, and the number of cells gradually was increasing. The number of cells in 0 s group was less than that of the other 5 groups and more unattached cells were found in the 0 s group than in the other groups. (2)Cell adhesion: 24 hours after human primary epidermal cells were inoculated, the absorbance value of epidermal cells in the 10 s group, 1 min group, 5 min group, 15 min group, 30 min group and 0 s group was 0.28±0.07, 0.30±0.05, 0.33±0.06, 0.34±0.07, 0.36±0.05, and 0.16±0.02. The difference in absorbance among the 6 groups was statistically significant (F=4.640, P=0.014). There were no significant differences between any 2 of 5 groups (the 10 s group, the 1 min group, the 5 min group, the 15 min group and the 30 min group) (with P values above 0.05). The 0 s group was compared with the 10 s group, the 1 min group, the 5 min group, the 15 min group, the 30 min group respectively, and the difference were statistically significant (t=2.640, 3.059, 3.584, 3.889, 4.187; P=0.021, 0.010, 0.004, 0.002, 0.001). (3) Cell proliferation: the human primary epidermal cells proliferation curve showed that the proliferation of cells in each collagen-coated group was similar, which was significantly higher than that of cells in the 0 s group. Two days after human primary epidermal cells were inoculated, the absorbance value of epidermal cells in the 10 s group, the 1 min group, the 5 min group, the 15 min group, the 30 min group and the 0 s group was 0.41±0.05, 0.41±0.02, 0.46±0.06, 0.49±0.08, 0.53±0.12 and 0.09±0.04. The difference in absorbance among the 6 groups was statistically significant (F=16.050, P<0.05). There were no significant differences between any 2 of 5 groups (the 10 s group, the 1 min group, the 5 min group, the 15 min group and the 30 min group) (with P values above 0.05). The 0 s group was compared with the 10 s group, the 1 min group, the 5 min group, the 15 min group, the 30 min group respectively, and the differences were statistically significant (t=0.323, 0.323, 0.374, 0.401, 0.44; with P values below 0.05). Four days after human primary epidermal cells were inoculated, the difference in absorbance among the 6 groups was statistically significant (F=9.816, P=0.001). There were no statistical differences among the 10 s group, the 1 min group, the 5 min group, the 15 min group and the 30 min group (with P values above 0.05). The 0 s group was compared with the 10 s group, the 1 min group, the 5 min group, the 15 min group, the 30 min group respectively, and the difference were statistically significant (with P values below 0.05). Six days after primary human epidermal cells were inoculated, the absorbance value of epidermal cells in the 10 s group, the 1 min group, the 5 min group, the 15 min group, the 30 min group and the 0 s group was 2.76±0.20, 3.03±0.17, 3.03±0.16, 3.18±0.17, 3.33±0.26 and 0.53±0.25. (4) Cell migration: 12 hours after scratching, the cell migration rates of the 10 s group, the 1 min group, the 5 min group, the 15 min group, the 30 min group and the 0 s group were (15.60±4.11)%, (18.26±6.79)%, (18.09±6.97)%, (18.00±4.70)%, (17.40±5.97)%, (4.05±1.71)% respectively. Twenty-four hours after scratching the cell migration rates of the 10 s group, the 1 min group, the 5 min group, the 15 min group, the 30 min group and the 0 s group were (36.33±5.63)%, (38.45±11.97)%, (42.36±14.40)%, (41.96±10.78)%, (44.04±12.28)%, (9.17±3.28)%. Thirty-six hours after scratching the cell migration rates of the 10 s group, the 1 min group, the 5 min group, the 15 min group, the 30 min group and the 0 s group were (73.71±17.90)%, (62.33±12.45)%, (69.79±20.82)%, (81.89±18.05)%, (73.49±22.89)%, (11.62±2.64)%. Overall comparison among groups showed statistically significicant difference (F=9.914, P<0.05). Further comparison between the groups showed that there were no statistical differences between the 10 s group, the 1 min group, the 5 min group, the 15 min group and the 30 min group (with P values above 0.05). The 0 s group was compared with the 10 s group, the 1 min group, the 5 min group, the 15 min group, the 30 min group respectively, and the differences were statistically significant (with P values below 0.05). (5) Cell cycle: the results of cell cycle test showed that 5 days after human primary epidermal cells were inoculated , there were no significant differences of the cell proportions of G1, G2 and S phase in cell cycle among the 6 groups (with P values above 0.05).

Conclusion

Type Ⅰ collagen coating culture plates play an important role on the culture of human epidermal cells and different culture plates coating time showed no significant effects on that.

图1 倒置相差显微镜下各组培养的人原代表皮细胞接种后不同观测时间点的形态、数量观察(×100)。接种后1 d,各包被组人原代表皮细胞大小较均匀,呈球形,边界清晰;接种后2、3、4、5、6 d,随时间推移,细胞逐渐沉降、贴壁,贴壁后呈眼型,可见细胞核,细胞数量增多扩展并逐渐连接成片;0 s组细胞数量较其他5组少且球形细胞比例多,至接种后6 d,仍未长满孔底
表1 各组原代表皮细胞接种后不同时间的吸光度值比较(%, ±s)
表2 各组人原代表皮细胞划痕后不同时间细胞迁移率比较(%, ±s)
图2 倒置相差显微镜下各组人原代表皮细胞划痕后不同时间观察结果(×100)。划痕后12 h可见部分细胞向划痕处迁移;划痕后24 h可明显看到细胞向划痕处迁移覆盖;划痕后36 h细胞继续向划痕处迁移且覆盖大部分划痕,各包被组细胞一般均可在划痕后48~72 h覆盖划痕;0 s组至划痕后72 h划痕仍未被覆盖
表3 各组人原代表皮细胞接种后5 d细胞周期比例变化(%, ±s)
[1]
Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells[J]. Cell, 1975, 6(3): 331-343.
[2]
韩雅婷,杨学义,徐小明,等. 表皮干细胞的分离、纯化培养及鉴定初报[J]. 西安:西北农林科技大学学报(自然科学版), 2005, 33(8): 1-6.
[3]
林才,罗旭,辛国华,等. 人表皮干细胞的快速分离培养及鉴定[J]. 上海交通大学学报(医学版), 2007, 27(6): 693-695.
[4]
Wang X, Shen C, Li Z, et al. Efficient isolation and high yield of epidermal cells from foreskin biopsies by dynamic trypsinization[J]. Burns, 2018, 44(5): 1240-1250.
[5]
Chugh RM, Chaturvedi M, Yerneni LK. An evaluation of the choice of feeder cell growth arrest for the production of cultured epidermis[J]. Burns, 2015, 41(8): 1788-1795.
[6]
Chugh RM, Chaturvedi M, Yerneni LK. Exposure cell number during feeder cell growth-arrest by Mitomycin C is a critical pharmacological aspect in stem cell culture system[J]. J Pharmacol Toxicol Methods, 2016, 100(80): 68-74.
[7]
任亚辉. 甲醇固定法制备饲养层细胞的应用和作用机制[D]. 西安:西北农林科技大学,2018.
[8]
Hultman CS, Brinson GM, Siltharm S, et al. Allogeneic fibroblasts used to grow cultured epidermal autografts persist in vivo and sensitize the graft recipient for accelerated second-set rejection[J]. J Trauma, 1996, 41(1): 51-58; discussion 58-60.
[9]
Bisson F, Rochefort E, Lavoie A, et al. Irradiated human dermal fibroblasts are as efficient as mouse fibroblasts as a feeder layer to improve human epidermal cell culture lifespan[J]. Int J Mol Sci, 2013, 14(3): 4684-4704.
[10]
王少玲,郭筠秋,张喜梅. 表皮细胞悬液与胶原海绵联合移植的研究[J]. 哈尔滨医科大学学报,2005, 39(1): 48-50.
[11]
徐林海,焦向阳,季正伦,等. 以胶原海绵为载体培养的人表皮细胞移植[J]. 中国修复重建外科杂志,2001, 15(2): 118-121.
[12]
陈利,陈月,王宗良,等. 胶原/羟基磷灰石复合材料的制备及用于骨缺损修复的研究现状[J/CD]. 中华损伤与修复杂志(电子版), 2016, 11(3): 232-235.
[13]
李毅,吴晓伟,王洪瑾. 胶原蛋白材料在慢性创面修复中的应用研究进展[J]. 临床医学研究与实践,2019, 4(2): 193-195.
[14]
Fu X, Xu M, Liu J, et al. Regulation of migratory activity of human keratinocytes by topography of multiscale collagen-containing nanofibrous matrices[J]. Biomaterials, 2014, 35(5): 1496-1506.
[15]
Sobral CS, Gragnani A, Cao X, et al. Human keratinocytes cultured on collagen matrix used as an experimental burn model[J]. J Burns Wounds, 2007, 7: e6.
[16]
Killat J, Reimers K, Choi CY, et al. Cultivation of keratinocytes and fibroblasts in a three-dimensional bovine collagen-elastin matrix (Matriderm®) and application for full thickness wound coverage in vivo[J]. Int J Mol Sci, 2013, 14(7): 14460-14474.
[17]
梁佩红,李芳,马福广,等. 以Ⅰ型胶原为基底的表皮细胞培养法[J]. 实用医学杂志,1999, 15(10): 801-802.
[18]
丁伟,王云龙,李敏,等. 成体表皮干细胞的分离培养与鉴定[J]. 皖南医学院学报,2010, 29(4): 252-254.
[19]
Horch RE, Debus M, Wagner G, et al. Cultured human keratinocytes on type I collagen membranes to reconstitute the epidermis[J]. Tissue Eng, 2000, 6(1): 53-67.
[20]
王联群,蓝蔚,黄培信,等. Ⅳ型胶原快速黏附法体外分选人胎儿表皮干细胞[J]. 中国组织工程研究与临床康复,2008, (43): 8535-8538.
[21]
王永胜,侯春林,肖仕初,等. 表皮细胞、成纤维细胞和几丁质-胶原蛋白复合人工皮的体外构建[J]. 中华实验外科杂志,2003, 20(6): 12-13.
[22]
王韦,王文正,刘俊龙,等. 应用胶原膜作底物培养人表皮细胞和移植的初步报告[J]. 第二军医大学学报,1988, 9(2): 116-119, 124-193.
[23]
李艳佳,焦建丽,张佃财,等. 在铺有鼠尾胶原的TransWell培养板套皿气-液交界面培养角质形成细胞形成皮肤样器官[J]. 中国组织工程研究与临床康复,2009, 13(42): 8211-8215.
[24]
刘虎仙,贾赤宇,付小兵,等. 重复利用Ⅳ型胶原以差速贴壁法分选表皮干细胞[J]. 中国临床康复,2006, (13): 38-40.
[1] 韩丽飞, 吕建鑫, 王宝偲, 曹欣华, 马骁, 胡浩霖, 张亚男. 分化拮抗非蛋白编码RNA调控乳腺癌细胞增殖的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(01): 21-29.
[2] 程慧, 李妍雨, 张蓓, 成杰, 张艳玲. 微小RNA-195靶向趋化因子5抑制滋养细胞增殖、迁移和侵袭及其机制研究[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 165-174.
[3] 孙佳辰, 宋垚垚, 申传安, 赵虹晴, 孙天骏. 表皮和表皮干细胞衰老的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 531-534.
[4] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[5] 石浩伟, 郝少龙, 纪宇, 孙浩, 聂芳, 胡阳, 李泽乾, 韩威. 长链非编码RNA-BANCR在胰腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2022, 16(05): 554-559.
[6] 雷震, 郭正辉, 唐晨, 彭圣萌, 任艳婷, 吴宛桦, 周杰, 陈勇明, 李凌峰, 黄海, 赖义明. ASF1B通过调控P53相关信号通路促进前列腺癌迁移和增殖的研究[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(03): 262-269.
[7] 李芬, 黄文娟, 朱乐攀. 色素上皮因子表达对肺癌细胞增殖及迁移能力的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 246-248.
[8] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[9] 梁芳, 刘广申, 徐艳. LncRNA AC130710通过miR-129-5P/WNT4轴促进子宫内膜癌细胞增殖和上皮间质转化[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 206-214.
[10] 莫钊鸿, 翟航, 苏日顺, 孟泓宇, 罗豪, 陈文豪, 许瑞云. U2AF2表达对肝细胞癌增殖和迁移的影响及其与预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 336-341.
[11] 魏志鸿, 郭娟, 江哲龙, 江艺, 吕立志. miR-4458靶向结合BZW2对肝癌细胞增殖、迁移和侵袭的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 108-113.
[12] 汤永昌, 袁峰, 梁豪, 钟昭众, 熊志勇, 曹明波, 任昱朋, 李宇轩, 姚志成, 邓美海. HBx对HBV相关性肝癌增殖和迁移能力的影响及其机制[J]. 中华肝脏外科手术学电子杂志, 2022, 11(02): 198-202.
[13] 杨翠萍, 杨晓金, 全旭, 谢玲, 吴云林, 陈平. 肝细胞核因子-1α基因突变协同腺瘤样结肠息肉病基因突变对家族性腺瘤性息肉病细胞增殖的影响[J]. 中华消化病与影像杂志(电子版), 2022, 12(04): 228-231.
[14] 张懿炜, 胡亚欣, 出良钊, 严昭, 曾茜, 蒲茜. CREB3通过下调FAK磷酸化水平抑制胶质瘤细胞增殖及侵袭转移的体外实验研究[J]. 中华临床医师杂志(电子版), 2023, 17(02): 202-209.
[15] 汪泉, 周英妹, 何颖. p27、cyclin-E在子宫内膜异位症中的表达及其临床意义[J]. 中华临床医师杂志(电子版), 2022, 16(06): 546-552.
阅读次数
全文


摘要