切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2019, Vol. 14 ›› Issue (04) : 263 -269. doi: 10.3877/cma.j.issn.1673-9450.2019.04.005

所属专题: 文献

论著

n-3多不饱和脂肪酸在预防皮肤光老化中的作用
朱美抒1, 程飚2, 庞梦如2, 范锟铻1, 韩艳丽1, 姜宏1, 杨光3,()   
  1. 1. 518035 深圳市第二人民医院烧伤整形科
    2. 510010 广州,解放军南部战区总医院烧伤整形科
    3. 518055 清华大学深圳国际研究生院深圳市卫生科技重点实验室
  • 收稿日期:2019-06-24 出版日期:2019-08-01
  • 通信作者: 杨光
  • 基金资助:
    国家自然科学基金(81671924,81272105)

Role of n-3 polyunsaturated fatty acids in preventing skin photoaging

Meishu Zhu1, Biao Cheng2, Mengru Pang2, Kunwu Fan1, Yanli Han1, Hong Jiang1, Guang Yang3,()   

  1. 1. Department of Burns and Plastic Surgery, Shenzhen Second People′s Hospital, Shenzhen 518035, China
    2. Department of Burns and Plastic Surgery, General Hospital of Southern Theater Command, People′s Liberation Army, Guangzhou 510010, China
    3. Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
  • Received:2019-06-24 Published:2019-08-01
  • Corresponding author: Guang Yang
  • About author:
    Corresponding author: Yang Guang, Email:
引用本文:

朱美抒, 程飚, 庞梦如, 范锟铻, 韩艳丽, 姜宏, 杨光. n-3多不饱和脂肪酸在预防皮肤光老化中的作用[J]. 中华损伤与修复杂志(电子版), 2019, 14(04): 263-269.

Meishu Zhu, Biao Cheng, Mengru Pang, Kunwu Fan, Yanli Han, Hong Jiang, Guang Yang. Role of n-3 polyunsaturated fatty acids in preventing skin photoaging[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(04): 263-269.

目的

探讨n-3多不饱和脂肪酸(n-3 PUFA)在预防皮肤光老化中的作用。

方法

将8月龄雌性C57BL/6小鼠按照随机数字表法分成2组,n-3 PUFA组和对照组。n-3 PUFA组小鼠除正常饮食外,每日喂食100 μL富含n-3 PUFA [18%二十碳五烯酸(EPA)和12%二十二碳六烯酸(DH)]的鱼油,喂食1个月后对小鼠背部进行脱毛,再以最小红斑剂量的紫外线B对小鼠进行(70 mJ/cm2)照射处理,每周3次,每次20 s,持续1个月。对照组仅同法照射,不喂食n-3 PUFA。实验结束后观察2组小鼠的背部皮肤变化,包括皮肤黑色素沉积灰度和皮纹宽度;用逆转录-聚合酶链反应对黑色素细胞诱导转录因子(MITF)mRNA表达量进行检测;小鼠背部皮肤组织做切片,再用天狼猩红染液进行染色观察,计算皮肤组织厚度;测量胶原蛋白含量;用实时荧光定量检测炎症巨噬细胞相关因子单核细胞趋化蛋白(MCP)-1和肿瘤坏死因子(TNF)-α的表达,以及胶原蛋白Ⅰ、胶原蛋白Ⅲ、细胞外基质金属蛋白酶(MMP)-2、MMP-9表达。数据比较采用Student′s t检验。

结果

n-3 PUFA组小鼠皮肤黑色素沉积灰度值为0.87±0.39,明显低于对照组2.25±0.45,差异有统计学意义(t=2.28,P<0.05);n-3 PUFA组MITF mRNA表达量为0.89±0.02,也明显低于对照组1.00±0.03,差异有统计学意义(t=2.33,P<0.05);对照组的皮纹相比n-3 PUFA组更加混乱;n-3 PUFA组皮纹宽度为9.65±0.68,对照组皮纹宽度为14.30±0.73,2组比较差异有统计学意(t=4.65,P<0.05);经天狼猩红染液染色观察到,n-3 PUFA组的皮肤厚度为(218.40±20.40)×102 μm,明显高于对照组(131.60±15.99)×102 μm,差异有统计学意义(t=3.35,P<0.05);n-3 PUFA组胶原蛋白含量(13.90±0.99) mg/g,高于对照组(10.45±0.44) mg/g,差异有统计学意义(t=3.18,P<0.05);n-3 PUFA组胶原蛋白Ⅰ表达量1.29±0.09,高于对照组0.98±0.09,差异有统计学意义(t=2.19,P<0.05),而2组胶原蛋白Ⅲ表达差异不明显,差异无统计学意义(t=1.01,P=0.32)。n-3 PUFA组炎症巨噬细胞相关因子MCP-1和TNF-α的表达为0.74±0.06、0.67±0.06,低于对照组1.00±0.09、1.00±0.06,2组比较差异有统计学意义(t=2.25、3.51,P值均小于0.05);n-3 PUFA组MMP-2和MMP-9的相对值为0.58±0.04、0.74±0.05,均低于对照组1.00±0.06、1.00±0.05,2组比较差异有统计学意义(t=5.09、3.24,P值均小于0.05)。

结论

n-3 PUFA通过增加胶原蛋白合成、降低巨噬细胞浸润和其表达的MMP来抵抗皮肤光老化,具有潜在临床应用价值。

Objective

To investigate the effect of n-3 polyunsaturated fatty acid (n-3 PUFA) on preventing skin photoaging.

Methods

Eight-month-old C57B1/6 female mice were divided into two groups, n-3 PUFA group and control group. In the n-3 PUFA group, 100 μL of fish oil rich in n-3 PUFA eicosapentaenoic acid [18% eicosapentaenoic acid (EPA) and 12% decosahexaenoic acid (DHA)] was fed daily, and the backs of the mice were depilated after 1 month of feeding, and then the mice were subjected to ultraviolet B (70 mJ/cm2) irradiation treatment, minimum erythema dose, 3 times a week and each time for 20 s, for 1 month. The control group only irradiated and did not feed n-3 PUFA. At the end of the experiment, the back skin changes of the two groups of mice were observed, including grayscale of skin melanin deposition and the width of the skin; the expression of the melanocyte inducing transcription factor (MITF) mRNA was verified by reverse transcription-polymerase chain reaction. Tissues of the back skin of mice were fixed with paraffin, and then sectioned with sirius red. The thickness of skin tissue was calculated and the collagen content was measured. The expression of inflammatory macrophage related factors monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)-α was measured by reverse transcription-polymerase chain reaction. And the expression of collagen Ⅰ, collagen Ⅲ, extracellular matrix metalloproteinase (MMP)-2, MMP-9. Data comparisons were performed using Student′s t-test.

Results

The grayscale of skin melanin deposition of n-3 PUFA group was 0.87±0.39, which was significantly lower than that of the control group (2.25±0.45), the difference was statistically significant (t=2.28, P<0.05). The expression of MITF mRNA in the n-3 PUFA group was 0.89±0.02, which was also significantly lower than that in the control group (1.00±0.03), the difference was statistically significant (t=2.33, P<0.05). After examination, the skin texture of the control group was more confusing than the n-3 PUFA group; the width of the n-3 PUFA group was 9.65±0.68, and the width of the control group was 14.30±0.73, the difference between the two groups was statistically significant (t=4.65, P<0.05). Observed by sirius red staining, the skin thickness of the n-3 PUFA group was (218.40±20.40) μm, which was significantly higher than that of the control group [(131.60±15.99) μm], the difference was statistically significant (t=3.35, P<0.05). The collagen content of n-3 PUFA group [(13.90±0.99) mg/g] was higher than that of the control group [(10.45±0.44) mg/g], the difference was statistically significant (t=3.18, P<0.05); The expression of collagen Ⅰ in the n-3 PUFA group was 1.29±0.09, which was higher than that in the control group (0.98±0.09), the difference was statistically significant (t=2.19, P<0.05), but there was no statistically significant difference in the expression of collagen Ⅲ in the two groups (t=1.01, P=0.32). The expression of inflammatory macrophage-associated factors MCP-1 and TNF-α in the n-3 PUFA group were 0.74±0.06 and 0.67±0.06, which were lower than those of the control group 1.00±0.09, 1.00±0.06, the differences between the two groups were statistically significant (t=2.25, 3.51; with P values below 0.05); the expression levels of MMP-2 and MMP-9 in n-3 PUFA group were 0.58±0.04, 0.74±0.05, which were louer than those of the control group (1.00±0.06, 1.00±0.05), the differences were statistically significant between the two groups (t=5.09, 3.24, with P values below 0.05).

Conclusion

n-3 PUFA ameliorated photoaging through increasing collagen synthesis, decreasing macrophage infiltration and MMPs expression levels, it has potential clinical application value.

表1 实时荧光定量检测所用引物
表2 2组小鼠紫外线B照射处理1个月后皮肤黑色素沉积灰度、MITF mRNA表达量及皮纹宽度比较(±s)
图1 2组小鼠皮肤相关指标检测情况
图2 2组小鼠天狼猩红染液染色情况(×5)
表3 2组小鼠紫外线B照射处理1个月后胶原蛋白Ⅰ、胶原蛋白Ⅲ、MCP-1、TNF-α及MMP-2、MMP-9相对值变化比较(±s)
[1]
Alexiades-Armenakas MR,Dover JS,Arndt KA. The spectrum of laser skin resurfacing: nonablative, fractional, and ablative laser resurfacing[J]. J Am Acad Dermatol, 2008, 58(5): 719-737; quiz 738-740.
[2]
Kune GA,Bannerman S,Field B, et al. Diet, alcohol, smoking, serum beta-carotene, and vitamin A in male nonmelanocytic skin cancer patients and controls[J]. Nutr Cancer, 1992, 18(3): 237-244.
[3]
Hakim IA,Harris RB,Ritenbaugh C. Fat intake and risk of squamous cell carcinoma of the skin[J]. Nutr Cancer, 2000, 36(2): 155-162.
[4]
Rizos EC,Ntzani EE,Bika E, et al. Association Between Omega-3 Fatty Acid Supplementation and Risk of Major Cardiovascular Disease Events: A Systematic Review and Meta-analysis[J]. JAMA, 2012, 308(10): 1024-1033.
[5]
Abdelhamid AS,Brown TJ,Brainard JS, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease[J]. Cochrane Database Syst Rev, 2018, 7: CD003177.
[6]
Robinson LE,Mazurak VC. N-3 polyunsaturated fatty acids: relationship to inflammation in healthy adults and adults exhibiting features of metabolic syndrome[J]. Lipids, 2013, 48(4): 319-332.
[7]
Li K,Huang T,Zheng J, et al. Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor alpha: a meta-analysis[J]. PLoS One, 2014, 9(2): e88103.
[8]
Richardson AJ. Omega-3 fatty acids in ADHD and related neurodevelopmental disorders[J]. Int Rev Psychiatry, 2006, 18(2): 155-172.
[9]
Perica MM,Delas I. Essential fatty acids and psychiatric disorders[J]. Nutr Clin Pract, 2011, 26(4): 409-425.
[10]
Mazereeuw G,Lanctôt KL,Chau SA, et al. Effects of omega-3 fatty acids on cognitive performance: a meta-analysis[J]. Neurobiol Aging, 2012, 33(7): 1482. e17-29.
[11]
Chew EY,Clemons TE,Agrón E, et al. Effect of Omega-3 Fatty Acids, Lutein/Zeaxanthin, or Other Nutrient Supplementation on Cognitive Function: The AREDS2 Randomized Clinical Trial[J]. JAMA, 2015, 314(8): 791-801.
[12]
Forbes SC,Holroyd-Leduc JM,Poulin MJ, et al. Effect of Nutrients, Dietary Supplements and Vitamins on Cognition: a Systematic Review and Meta-Analysis of Randomized Controlled Trials[J]. Can Geriatr J, 2015, 18(4): 231-245.
[13]
Bradbury J. Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain[J]. Nutrients, 2011, 3(5): 529-554.
[14]
Janssen CI,Kiliaan AJ. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration[J]. Prog Lipid Res, 2014, 53: 1-17.
[15]
Pilkington SM,Massey KA,Bennett SP, et al. Randomized controlled trial of oral omega-3 PUFA in solar-simulated radiation-induced suppression of human cutaneous immune responses[J]. Am J Clin Nutr, 2013, 97(3): 646-652.
[16]
Lou YR,Peng QY,Li T, et al. Effects of high-fat diets rich in either omega-3 or omega-6 fatty acids on UVB-induced skin carcinogenesis in SKH-1 mice[J]. Carcinogenesis, 2011, 32(7): 1078-1084.
[17]
Takemura N,Takahashi K,Tanaka H, et al. Dietary, but not topical, alpha-linolenic acid suppresses UVB-induced skin injury in hairless mice when compared with linoleic acids[J]. Photochem Photobiol, 2002, 76(6): 657-663.
[18]
Yum HW,Kim SH,Kang JX, et al. Amelioration of UVB-induced oxidative stress and inflammation in fat-1 transgenic mouse skin[J]. Biochem Biophys Res Commun, 2018, 502(1): 1-8.
[19]
Yum HW,Park J,Park HJ, et al. Endogenous ω-3 Fatty Acid Production by fat-1 Transgene and Topically Applied Docosahexaenoic Acid Protect against UVB-induced Mouse Skin Carcinogenesis[J]. Sci Rep, 2017, 7(1): 11658.
[20]
Yang CC,Hung CF,Chen BH. Preparation of coffee oil-algae oil-based nanoemulsions and the study of their inhibition effect on UVA-induced skin damage in mice and melanoma cell growth[J]. Int J Nanomedicine, 2017, 12: 6559-6580.
[21]
Zajdel A,Wilczok A,Chodurek E, et al. Polyunsaturated fatty acids inhibit melanoma cell growth in vitro[J]. Acta Pol Pharm, 2013, 70(2): 365-369.
[22]
Rui Y,Zhaohui Z,Wenshan S, et al. Protective effect of MAAs extracted from Porphyra tenera against UV irradiation-induced photoaging in mouse skin[J]. J Photochem Photobiol B, 2018, 192: 26-33.
[23]
Bora NS,Mazumder B,Mandal S, et al. Amelioration of UV radiation-induced photoaging by a combinational sunscreen formulation via aversion of oxidative collagen degradation and promotion of TGF-beta-Smad-mediated collagen production[J]. Eur J Pharm Sci, 2019, 127: 261-275.
[24]
Kim HK. Garlic Supplementation Ameliorates UV-Induced Photoaging in Hairless Mice by Regulating Antioxidative Activity and MMPs Expression[J]. Molecules, 2016, 21(1): 70.
[25]
Kavazos K,Nataatmadja M,Wales KM, et al. Dietary Supplementation with Omega-3 Polyunsaturated Fatty Acids Modulate Matrix Metalloproteinase Immunoreactivity in a Mouse Model of Pre-abdominal Aortic Aneurysm[J]. Heart Lung Circ, 2015, 24(4): 377-385.
[26]
Taguchi A,Kawana K,Tomio K, et al. Matrix metalloproteinase (MMP)-9 in cancer-associated fibroblasts (CAFs) is suppressed by omega-3 polyunsaturated fatty acids in vitro and in vivo[J]. PLos One, 2014, 9(2): e89605.
[27]
Nicolai E,Sinibaldi F,Sannino G, et al. Omega-3 and Omega-6 Fatty Acids Act as Inhibitors of the Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 Activity[J]. Protein J, 2017, 36(4): 278-285.
[28]
Zhang W,Zhang H,Mu H, et al. Omega-3 polyunsaturated fatty acids mitigate blood-brain barrier disruption after hypoxic-ischemic brain injury[J]. Neurobiol Dis, 2016, 91: 37-46.
[1] 刘镭, 杨昕, 许晓华, 林胜谋, 熊初琴, 农丽录, 董振宇, 李胜利. 中孕期胎儿鼻前皮肤厚度及鼻骨长度筛查胎儿染色体病的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(05): 506-510.
[2] 欧阳剑锋, 李炳权, 叶永恒, 胡少宇, 向阳. 关节镜联合富血小板血浆治疗粘连性肩周炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 765-772.
[3] 朴广昊, 李屹洲, 刘瑞, 赵建民, 王凌峰. 皮肤撕脱伤撕脱皮瓣活力早期评估与修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 528-532.
[4] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[5] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[6] 郭姗姗, 朱磊, 刘柳, 高燕, 梁应凤, 朱丽娜, 张丹, 张涛. 对放射性皮肤损伤链式管理模式联合结构化皮肤干预的临床疗效分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 306-311.
[7] 麻艺群, 刘巍敏, 张梦思, 朱辉, 范鑫, 付晋凤. 对腹股沟区全厚皮片修复儿童皮肤缺损的疗效观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 235-240.
[8] 李峰, 黎君友, 冯书堂, 李国平, 杨洁蓉. 对GGTA1/β4GalNT2双基因敲除近交系五指山小型猪皮进行异种移植的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 241-248.
[9] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[10] 任琼, 吴东燕, 李中花, 石晶, 张静, 耿丽伟. 血清降钙素原、基质金属蛋白酶-9和可溶性细胞间黏附分子-1联合检测对绒毛膜羊膜炎的诊断价值[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 194-199.
[11] 刘立, 陈诚, 李新科, 刘凯, 屠昌明. 血清IL-6、hs-CRP、MMP-9联合检测在腹股沟疝无张力修补术预后评价中的价值分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 405-409.
[12] 李义亮, 买买提·依斯热依力, 王永康, 王志, 赛甫丁·艾比布拉, 李赞林, 克力木·阿不都热依木. 聚丙烯和生物补片对腹壁疝大鼠腹横筋膜组织氧化应激、MMPs及TIMPs的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(02): 125-129.
[13] 乔小梅, 孔凯丽, 方敬爱, 张晓东. "肠-皮肤轴"与尿毒症皮肤病变的关系研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 291-294.
[14] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[15] 李锦亮, 曾茂娟, 钟金宝, 何伟强, 林文新. 司美格鲁肽对肥胖2型糖尿病患者皮肤微循环功能的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 192-196.
阅读次数
全文


摘要