切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2019, Vol. 14 ›› Issue (06) : 416 -425. doi: 10.3877/cma.j.issn.1673-9450.2019.06.004

所属专题: 文献

论著

缺血再灌注对小鼠胸部皮瓣的影响及机制研究
章盖1, 耿乐乐1, 方勇1,()   
  1. 1. 200011 上海交通大学医学院附属第九人民医院烧伤整形科
  • 收稿日期:2019-10-06 出版日期:2019-12-01
  • 通信作者: 方勇
  • 基金资助:
    国家自然科学基金项目(81272081)

Effect of ischemia reperfusion on thoracic flap in mice and its mechanism

Gai Zhang1, Lele Geng1, Yong Fang1,()   

  1. 1. Department of Burns and Plastic Surgery, Shanghai Ninth People′s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
  • Received:2019-10-06 Published:2019-12-01
  • Corresponding author: Yong Fang
  • About author:
    Corresponding author: Fang Yong, Email:
引用本文:

章盖, 耿乐乐, 方勇. 缺血再灌注对小鼠胸部皮瓣的影响及机制研究[J]. 中华损伤与修复杂志(电子版), 2019, 14(06): 416-425.

Gai Zhang, Lele Geng, Yong Fang. Effect of ischemia reperfusion on thoracic flap in mice and its mechanism[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2019, 14(06): 416-425.

目的

建立一种更稳定、可重复的小鼠皮瓣缺血再灌注损伤(IRI)模型,明确皮瓣缺血再灌注损伤机制,阐述皮瓣缺血时间、再灌注血流量与皮瓣损伤程度的关系。

方法

共选用162只SPF级ICR健康雄性小鼠为本次实验对象。(1)实验一,选用90只ICR小鼠,采用抽签法随机分为3组(n=30):胸部皮瓣组、背部皮瓣组、腹部皮瓣组,再分别将各组小鼠按夹闭皮瓣蒂血管的时间(皮瓣缺血时间)分为6个亚组(n=5):Ⅰ、Ⅱ、Ⅲ、Ⅵ、Ⅴ、Ⅵ组,对应的缺血时间分别为0、1.5、3.0、5.0、8.0、10.0 h。胸部、背部、腹部皮瓣分别以左侧胸外侧动脉、胸背动脉、腹浅动脉为对称轴设计宽1.5 cm、长3.0 cm的轴型皮瓣。微型动脉夹夹闭血管蒂,建立缺血皮瓣模型。用全景激光灌注成像仪(FLPI)观察各组皮瓣基础血流量,再灌注7 d后观察皮瓣存活情况,计算坏死率,确定最佳小鼠皮瓣IRI模型。(2)实验二,选用另外72只ICR小鼠,建立上述胸部皮瓣IRI模型,按皮瓣缺血时间分为6组(n=12):ⅰ、ⅱ、ⅲ、ⅳ、ⅴ、ⅵ组,对应的缺血时间分别为0、1.5、3.0、5.0、8.0、10.0 h,用FLPI动态观察各组皮瓣的血流灌注量。再灌注7 d后观察皮瓣存活情况,计算各组皮瓣坏死率。分别取各组半数小鼠再灌注24.0 h后的皮瓣组织,用苏木精-伊红染色分析组织形态学改变,二氯氢化荧光素二乙酸酯探针法检测细胞内活性氧含量,末端脱氧核苷酸转移酶介导的d-UTP缺口末端标记(TUNEL)染色检测细胞凋亡并计算凋亡细胞阳性指数,酶联免疫吸附测定法(ELISA)检测再灌注24.0 h后肿瘤坏死因子-α(TNF-α)表达水平。对数据行单因素方差分析、t检验。

结果

实验一结果显示:小鼠胸部皮瓣基础血流灌注量为(320.2±7.5) PU,背部皮瓣基础血流灌注量为(156.3±12.4) PU,腹部皮瓣基础血流灌注量为(78.5±5.5) PU,各部位差异有统计学意义(F=174.8,P<0.05)。胸部皮瓣组不同亚组所致皮瓣坏死率比较差异有统计学意义(F=261.7,P<0.05),且背部、腹部皮瓣组皮瓣坏死率比较,差异均有统计学意义(F=39.6、235.1,P值均小于0.05)。实验二结果显示:小鼠胸部皮瓣可耐受1.5 h以内缺血,再灌注血流量恢复快,ⅰ、ⅱ组皮瓣坏死率分别为(1.20±0.15)%、(6.50±0.24)%,均小于10.00%。而ⅰ组活性氧水平相对倍数、凋亡细胞阳性指数、TNF-α表达水平分别为1.00±0.12、(3.2±0.1)%、(2.09±0.93) μg/μL,ⅱ组分别为1.26±0.07、(4.3±0.1)%、(3.63±0.42) μg/μL,与ⅰ组相比均升高,差异均有统计学意义(t=3.58、6.77、3.03,P值均小于0.05);ⅲ、ⅳ组皮瓣再灌注血流量恢复缓慢,ⅳ组皮瓣坏死率、活性氧水平相对倍数、凋亡细胞阳性指数、TNF-α表达水平分别为:(48.2±3.57)%、2.34±0.17、(22.2±1.4)%、(4.79±0.72) μg/μL,与ⅱ组相比均升高,差异有统计学意义(t=11.52、10.50、12.85、2.80,P值均小于0.05)。ⅴ、ⅵ组皮瓣再灌注血流量恢复极缓慢,苏木精-伊红染色显示:组织充血、血管内血栓形成,其中ⅴ组皮瓣坏死率、TNF-α表达水平分别为(75.7±3.30)%、(6.10±0.56)%,与ⅳ组相比均升高,差异均有统计学意义(t=6.59、2.86,P值均小于0.05);而ⅴ组活性氧水平相对倍数为1.47±0.21,较ⅳ组降低,差异有统计学意义(t=5.55,P=0.005),凋亡细胞阳性指数为(20.5±2.2)%,与ⅳ组比较,差异无统计学意义(t=0.15,P=0.88)。

结论

与小鼠背部、腹部皮瓣IRI模型相比,小鼠胸部皮瓣IRI模型基础血流量更大、更稳定,不同缺血时间所致皮瓣坏死率变化更有显著性。缺血再灌注可以引起小鼠胸部皮瓣的损伤,并随着缺血时间的延长,再灌注血流量明显降低,皮瓣的损伤逐渐加重。缺血再灌注致皮瓣损伤的机制可能是缺血再灌注后产生大量的活性氧,导致血管收缩,影响微循环;同时大量炎性细胞聚集,局部炎症反应加重,导致皮瓣损伤加重。

Objective

To design a mouse model of skin flap ischemia-reperfusion which is suitable and reproducible, clarify the mechanism of ischemia reperfusion injury (IRI) of the skin flap, and elaborate the relationship between the ischemia time, reperfusion blood flow and the degree of IRI.

Methods

A total of 162 SPF grade healthy male ICR mice were selected as the experimental subjects. (1)In the experiment one, 90 IRI mice were respectively drawn into 3 groups (n=30): thoracic skin flap group, dorsal skin flap group and epigastric skin flap group, and then the mice in each group were divided into 6 groups (n=5), Ⅰ, Ⅱ, Ⅲ, Ⅵ, Ⅴ, Ⅵ group according to the time of the vessel pedicled clamped(time of ischemia), the corresponding ischemia time respectively was 0, 1.5, 3.0, 5.0, 8.0, 10.0 h. The 3.0 cm×1.5 cm flaps were designed with symmetry axis of left lateral thoracic artery, thoracic dorsal artery and superficial abdominal artery. A model of ischemic flap was established by clamping pedicle with miniature artery clip. Basic blood flow of flap in each group were detected by full-field laser perfusion imager (FLPI), after 7 days reperfusion, percent necrosis of flap was measured. The optimal model of murine skin flap for ischemia/reperfusion was determined by statistical analysis.(2)In the experiment two, the remaining 72 male ICR mice were divided into 6 groups (n=12), ⅰ, ⅱ, ⅲ, ⅳ, ⅴ, ⅵ group according to the time of the vessel pedicled clamped(time of ischemia), the corresponding ischemia time respectively was 0, 1.5, 3.0, 5.0, 8.0, 10.0 h. Blood flow during ischemia and reperfusion were monitored and analysised using FLPI. After 7 days reperfusion, the survival of the flap was observed and the rate of skin flap necrosis was calculated. Flap tissues of half of the mice in each group were taken after 24.0 h of reperfusion. Histomorphological changes were analyzed by hematoxylin- eosin staining. Dichlorofluorescein diacetate probe method was used to detect the content of reactive oxygen species. Terminal deoxynucleotidyl transferase-mediated d-UTP nick end-labing was used to detect apoptosis and calculate the positive index of apoptotic cells. The content of tumor necrosis factor-α(TNF- α)was determined by enzyme-linked immunosorbent assay (ELISA). Data were processed with one-way analysis of variance and t test.

Results

In the experiment one, the results showed that the basal perfusion blood flow of the mice thoracic flap was (320.2±7.5) PU, the basal perfusion blood flow of dorsal skin flap was (156.3±12.4) PU, the basal perfusion blood flow of epigastric skin flap was (78.5±5.5) PU, and the differences was statistically significant (F=174.8, P<0.05). In the thoracic skin flap group, the necrosis rates of the flap were different in every ischemic time periods, the difference was statistically significant (F=261.7, P<0.05), meanwhile, the necrosis rates of the flap were different in every ischemic time periods in the dorsal skin flap group and in the epigastric flap skin group, the differences were statistically significant (F=39.6, 235.1; with P values below 0.05). In the experiment two, the results showed that the mice thoracic skin flap could tolerate ischemia within 1.5 hours, the flap reperfusion blood flow recovered fast. The necrosis rate of groupⅰ, ⅱ was (1.20±0.15)%, (6.50±0.24)%, which were less than 10.00%. The content of reactive oxygen species, the positive index of apoptotic cells, TNF-α in groupⅰwere 1.00±0.12, (3.2±0.1)%、(2.09±0.93) μg/μL, and in group ⅱ were 1.26±0.07, (4.3±0.1)%, (3.63±0.42) μg/μL, which were increased compared with groupⅰ, the differences were statistically significant(t=3.58, 6.77, 3.03; with P values below 0.05). In group ⅲ, ⅳ, the flap reperfusion blood flow recovered slowly, flap necrosis rate, relative multiples of reactive oxygen species, the positive index of apoptotic cells, TNF-α were(48.2±3.57)%, 2.34±0.17, (22.2±1.4)%, (4.79±0.72) μg/μL, which were increased significantly compared with group ⅱ, the differences were statistically significant(t=11.52, 10.50, 12.85, 2.80; with P values below 0.05). In groupⅴ, ⅵ, the flap reperfusion blood flow recovered very slowly. Hematoxylin - eosin staining showed tissue hyperemia and intravascular thrombosis. The necrosis rate and TNF-α were (75.7±3.30)%, (6.10±0.56)%, which were increased significantly compared with group ⅵ, the differences were statistically significant (t=6.59, 2.86; with P values below 0.05). Relative multiples of reactive oxygen species was 1.47±0.21 in groupⅴ, which was decreased significantly compared with group ⅵ, the difference was statistically significant(t=5.55, P=0.005); the positive index of apoptotic cells was (20.5±2.2)%, which was no significant difference compared with group ⅳ, the difference was statistically significant (t=0.15, P=0.88).

Conclusions

Compared with the model of mice dorsal skin flap and epigastric skin flap, the perfusion blood flow of mice thoracic skin flap model was higher and more stable, and the change of necrosis rate caused by different ischemic time was more statistically significant. Ischemia reperfusion can cause the injury of the thoracic skin flap in mice, with the prolongation of the ischemia time, reperfusion blood flow is more decreased, injury of the flap becomes worse. The mechanism of ischemia reperfusion injury to the skin flap may be that after ischemia reperfusion, a large amount of reactive oxygen species is produced, leading to vasoconstriction and affecting microcirculation. At the same time reactive oxygen species results in the accumulation of numerous neutrophils, local inflammatory reaction aggravation, leading to the aggravation of the flap injury.

图1 小鼠各个部位皮瓣,皮瓣大小均为3.0 cm×1.5 cm。A示小鼠胸部皮瓣模型;B示小鼠背部皮瓣模型;C示小鼠腹部皮瓣模型
图2 小鼠不同部位皮瓣血流灌注激光散斑成像图。A示胸部皮瓣,红色为胸外侧动脉走形;B示背部皮瓣,红色为胸背动脉走形;C示腹部皮瓣,红色为腹壁浅动脉走形
图3 各组小鼠缺血再灌注过程不同时间段激光散斑成像图。ⅰ、ⅱ、ⅲ、ⅳ、ⅴ、ⅵ组对应的缺血时间分别为:0、1.5、3.0、5.0、8.0、10.0 h,血流成像图中红色、黄色区域为血流灌注良好区域,蓝色、黑色为血流灌注不佳区域
图4 各组缺血皮瓣再灌注血流量的连续性变化,随缺血时间的增加,24 h内皮瓣血流再灌注过程有明显不同;ⅰ、ⅱ、ⅲ、ⅳ、ⅴ、ⅵ组对应的缺血时间分别为:0、1.5、3.0、5.0、8.0、10.0 h
图5 再灌注7 d,各组小鼠胸部皮瓣坏死情况
图6 生物显微镜下观察各组小鼠缺血皮瓣组织再灌注24 h后组织形态学变化。随缺血时间的延长,组织内充血、炎性细胞浸润明显增加,组织损伤加重;缺血8.0 h及以上出现血管内微血栓,组织破坏严重(苏木精-伊红染色×10)
图7 小鼠各组缺血皮瓣组织内活性氧含量相对倍数随缺血时间的变化
图8 各组缺血皮瓣再灌注24 h后TUNEL实验结果。TUNEL为末端脱氧核苷酸转移酶介导的d-UTP缺口末端标记
图9 各组缺血皮瓣再灌注24 h后凋亡细胞阳性指数比较
[1]
Carroll WR, Esclamado RM. Ischemia/reperfusion injury in microvascular surgery[J]. Head Neck, 2000, 22(7): 700-713.
[2]
Zorov DB, Filburn CR, Klotz LO, et al. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes[J]. J Exp Med, 2000, 192(7): 1001-1014.
[3]
Pu CM, Liu CW, Liang CJ, et al. Adipose-Derived Stem Cells Protect Skin Flaps against Ischemia/Reperfusion Injury via IL-6 Expression[J]. J Invest Dermatol, 2017, 137(6): 1353-1362.
[4]
Vourtsis SA, Spyriounis PK, Agrogiannis GD, et al. VEGF application on rat skin flap survival[J]. J Invest Surg, 2012, 25(1): 14-19.
[5]
Minh TC, Ichioka S, Harii K, et al. Dorsal bipedicled island skin flap a new flap model in mice[J]. Scand J Plast Reconstr Surg Hand Surg, 2002, 36(5): 262-267.
[6]
Tatlidede S, McCormack MC, Eberlin KR, et al. A novel murine island skin flap for ischemic preconditioning [J]. J Surg Res, 2009, 154(1): 112-117.
[7]
Toutain CE, Brouchet L, Raymond-Letron I, et al. Prevention of skin flap necrosis by estradiol involves reperfusion of a protected vascular network[J]. Cir Res, 2009, 104(2): 245-254, 12p following 254.
[8]
戚征,高春锦,孙学军,等. 高压氧预处理促进皮瓣成活的研究[J]. 中国医学美学美容杂志,2009, 15(1): 46-48.
[9]
May JW Jr, Chait LA, O′Brien BM, et al. The no-reflow phenomenon in experimental free flaps[J].Plast Reconstr Surg, 1978, 61(2): 256-267.
[10]
Kerrigan CL, Zelt RG, Daniel RK. Secondary critical ischemia time of experimental skin flaps[J]. Plast Reconstr Surg, 1984, 74(4): 522-526.
[11]
张巍,顾文奇,柴益民. 皮瓣缺血-再灌注损伤的机制研究进展[J]. 国际骨科学杂志,2011, 32(2): 108-110.
[12]
冯康虎,方鹏飞,侯召权. 皮瓣移植术后缺血再灌注损伤病理生理机制的研究现状[J]. 卫生职业教育,2015, 33(23): 151-153.
[13]
Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept[J]. Redox Biol, 2015, 6: 524-551.
[14]
Andrienko TN, Pasdois P, Pereira GC, et al. The role of succinate and ROS in reperfusion injury - A critical appraisal[J]. J Mol Cell Cardiol, 2017, 110: 1-14.
[15]
Aydogan H, Gurlek A, Parlakpinar H, et al. Beneficial effects of caffeic acid phenethyl ester (CAPE) on the ischaemia-reperfusion injury in rat skin flaps[J]. J Plast Reconstr Aesthet Surg, 2007, 60(5): 563-568.
[16]
Nakai K, Kadiiska MB, Jiang JJ, et al. Free radical production requires both inducible nitric oxide synthase and xanthine oxidase in LPS-treated skin[J]. Proc Natl Acad Sci U S A, 2006, 103(12): 4616-4621.
[17]
Yan H, Zhang F, Kochevar AJ, et al. The effect of postconditioning on the muscle flap survival after ischemia-reperfusion injury in rats[J]. J Invest Surg, 2010, 23(5): 249-256.
[18]
Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning[J]. Am J Physiol Gastrointest Liver Physiol, 2003, 284(1): G15-G26.
[19]
de Vries B, Köhl J, Leclercq WK, et al. Complement factor C5a mediates renal ischemia-reperfusion injury independent from neutrophils[J]. J Immunol, 2003, 170(7): 3883-3889.
[20]
Tatlidede SH, Murphy AD, McCormack MC, et al. Improved survival of murine island skin flaps by prevention of reperfusion injury[J]. Plast Reconstr Surg, 2009, 123(5): 1431-1439.
[21]
Tapuria.N, Kumar.Y, Habib.MM, et al. Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury--a review [J]. The Journal of surgical research, 2008, 150(2): 304-30.
[22]
刁立君,仇树林. 皮瓣缺血再灌注损伤与细胞凋亡的研究进展[J]. 中国美容医学,2008, 17(8): 1240-1243.
[23]
Zhu P, Hu S, Jin Q, et al. Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: A mechanism involving calcium overload/XO/ROS/mPTP pathway[J]. Redox Biology, 2018, 16: 157-168.
[1] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[2] 张浩, 张万福, 韩飞, 佟琳, 王运帷, 李少辉, 陈阳, 曹鹏, 官浩. 游离组织瓣治疗无吻合血管或需困难吻合血管创面的临床进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 442-446.
[3] 陆美琪, 赵洁, 单菲, 王兴蕾, 姜笃银. 药物相关坏疽性脓皮病的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 447-450.
[4] 张潇尹, 于洋. 牙龈卟啉单胞菌介导慢性肾病发生发展的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 328-334.
[5] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[6] 熊风, 林辉煌, 陈晓波. 铥激光在泌尿外科中的临床应用及研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 533-536.
[7] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[8] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[9] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[10] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[11] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[12] 金刚, 李英真, 施维, 李博. 帕金森病在病理生理学中的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 315-319.
[13] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[14] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[15] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
阅读次数
全文


摘要