切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2020, Vol. 15 ›› Issue (04) : 312 -315. doi: 10.3877/cma.j.issn.1673-9450.2020.04.016

所属专题: 文献

综述

环状RNA在皮肤相关疾病及创面愈合中的研究进展
于少硕1, 金剑2, 何飞1, 夏照帆1,()   
  1. 1. 200433 上海,海军军医大学第一附属医院烧伤外科,全军烧伤研究所,中国医学科学院烧伤暨烧创复合伤救治关键技术创新单元
    2. 310013 杭州,解放军联勤保障部队第903医院烧伤整形科
  • 收稿日期:2020-06-11 出版日期:2020-08-01
  • 通信作者: 夏照帆
  • 基金资助:
    国家自然科学基金(81930057,81772076)

Research progress of circular RNA in cutaneous diseases and wound healing

Shaoshuo Yu1, Jian Jin2, Fei He1, Zhaofan Xia1,()   

  1. 1. Department of Burn Surgery, Burn Research Institute of PLA, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
    2. Department of Burns and Plastic Surgery, 903rd Hospital of PLA, Hangzhou 310013, China
  • Received:2020-06-11 Published:2020-08-01
  • Corresponding author: Zhaofan Xia
  • About author:
    Corresponding author: Xia Zhaofan, Email:
引用本文:

于少硕, 金剑, 何飞, 夏照帆. 环状RNA在皮肤相关疾病及创面愈合中的研究进展[J]. 中华损伤与修复杂志(电子版), 2020, 15(04): 312-315.

Shaoshuo Yu, Jian Jin, Fei He, Zhaofan Xia. Research progress of circular RNA in cutaneous diseases and wound healing[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2020, 15(04): 312-315.

环状RNA(circRNA)为一类具有连续共价闭环结构的新型非编码RNA(ncRNA),无3′及5′游离末端。其可作为微小RNA(miRNA)"分子海绵"调节转录或剪接,也可与RNA结合蛋白相互作用,在机体生理和病理过程中都起着关键作用。近来有研究表明,在与创面愈合相关的细胞(血管内皮细胞、角质细胞)增殖、迁移等活动中,有circRNA参与其中。本文回顾了circRNA在不同类型皮肤细胞中发挥的调节作用及其与皮肤相关疾病如皮肤鳞状细胞癌、基底细胞癌、重度痤疮的联系,旨在为阐释创面愈合的细胞分子机制提供新思路,以期为解决临床上创面治疗难题开拓新方向。

Circular RNA(circRNA) is a novel class of non-coding RNA that assumes a covalently closed continuous loop without 3′ and 5′ free terminus. Some circRNA can serve as microRNA (miRNA) sponges, regulate transcription or splicing, and can interact with RNA binding proteins, thus playing pivotal roles in both physiological and pathological process. Recent studies suggest that circRNA has been involved in cellular activities like proliferation and migration of vascular endothelial cells and keratinocytes, which are associated with wound healing. This article reviewed the roles of circRNA in regulation of different types of skin cells, as well as its interaction with skin diseases like cutaneous squamous cell carcinoma, basal cell carcinoma and severe acne, with the purpose to propose new insights on the cellular and molecular mechanism of wound healing, and to exploit a novel direction in the solution to conundrums of clinical wound management.

[1]
Sorg H, Tilkorn DJ, Hager S, et al. Skin Wound Healing: An Update on the Current Knowledge and Concepts[J]. Eur Surg Res, 2017, 58(1-2): 81-94.
[2]
黄仁燕,郑德. 长链非编码RNA对创面愈合调控作用的研究进展[J]. 成都医学院学报,2017, 12(4): 520-524.
[3]
Wang PH, Huang BS, Horng HC, et al. wound healing[J]. J Chin Med Assoc, 2018, 81(2): 94-101.
[4]
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157.
[5]
Hsiao KY, Sun HS, Tsai SJ. Circular RNA - New member of noncoding RNA with novel functions[J]. Exp Biol Med (Maywood), 2017, 242(11): 1136-1141.
[6]
Qu S, Yang X, Li X, et al. Circular RNA: A new star of noncoding RNAs[J]. Cancer Lett, 2015, 365(2): 141-148.
[7]
Cocquerelle C, Mascrez B, Hétuin D, et al. Mis-splicing yields circular RNA molecules[J]. FASEB J, 1993, 7(1): 155-160.
[8]
Qu S, Zhong Y, Shang R, et al. The emerging landscape of circular RNA in life processes[J]. RNA Biol, 2017, 14(8): 992-999.
[9]
Ebbesen KK, Kjems J, Hansen TB. Circular RNAs: Identification, biogenesis and function[J]. Biochim Biophys Acta, 2016, 1859(1): 163-168.
[10]
Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs[J]. Cell, 2015, 160(6): 1125-1134.
[11]
Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed[J]. Mol Cell, 2015, 58(5): 870-885.
[12]
Wang YH, Yu XH, Luo SS, et al. Comprehensive circular RNA profiling reveals that circular RNA100783 is involved in chronic CD28-associated CD8(+)T cell ageing[J]. Immun Ageing, 2015, 12: 17.
[13]
Burd CE, Jeck WR, Liu Y, et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk[J]. PLoS Genet, 2010, 6(12): e1001233.
[14]
Lukiw WJ. Circular RNA (circRNA) in Alzheimer′s disease (AD)[J]. Front Genet, 2013, 4: 307.
[15]
Wang K, Long B, Liu F, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223[J]. Eur Heart J, 2016, 37(33): 2602-2611.
[16]
Yang W, Du WW, Li X, et al. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis[J]. Oncogene, 2016, 35(30): 3919-3931.
[17]
An X, Liu X, Ma G, et al. Upregulated circular RNA circ_0070934 facilitates cutaneous squamous cell carcinoma cell growth and invasion by sponging miR-1238 and miR-1247-5p[J]. Biochem Biophys Res Commun, 2019, 513(2): 380-385.
[18]
Sand M, Bechara FG, Gambichler T, et al. Circular RNA expression in cutaneous squamous cell carcinoma[J]. J Dermatol Sci, 2016, 83(3): 210-218.
[19]
Sand M, Bechara FG, Sand D, et al. Circular RNA expression in basal cell carcinoma[J]. Epigenomics, 2016, 8(5): 619-632.
[20]
Liang J, Wu X, Sun S, et al. Circular RNA expression profile analysis of severe acne by RNA-seq and bioinformatics[J]. J Eur Acad Dermatol Venereol, 2018, 32(11): 1986-1992.
[21]
Maiese K. Disease onset and aging in the world of circular RNAs[J]. J Transl Sci, 2016, 2(6): 327-329.
[22]
Peng Y, Song X, Zheng Y, et al. Circular RNA profiling reveals that circCOL3A1-859267 regulate type I collagen expression in photoaged human dermal fibroblasts[J]. Biochem Biophys Res Commun, 2017, 486(2): 277-284.
[23]
Liu C, Yao MD, Li CP, et al. Silencing Of Circular RNA-ZNF609 Ameliorates Vascular Endothelial Dysfunction[J]. Theranostics, 2017, 7(11): 2863-2877.
[24]
Dang RY, Liu FL, Li Y. Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis[J]. Biochem Biophys Res Commun, 2017, 490(2): 104-110.
[25]
Morissette Martin P, Maux A, Laterreur V, et al. Enhancing repair of full-thickness excisional wounds in a murine model: Impact of tissue-engineered biological dressings featuring human differentiated adipocytes[J]. Acta Biomater, 2015, 22: 39-49.
[26]
Zhang X, Chen L, Xiao B, et al. Circ_0075932 in adipocyte-derived exosomes induces inflammation and apoptosis in human dermal keratinocytes by directly binding with PUM2 and promoting PUM2-mediated activation of AuroraA/NF-κB pathway[J]. Biochem Biophys Res Commun, 2019, 511(3): 551-558.
[27]
Li J, Chen L, Cao C, et al. The long non-coding RNA LncRNA8975-1 is upregulated in hypertrophic scar fbroblasts and controls collagen expression[J]. Cell Physiol Biochem, 2016, 40(1-2): 326-334.
[28]
Li M, Wang J, Liu D, et al. High-throughput sequencing reveals differentially expressed lncRNAs and circRNAs, and their associated functional network, in human hypertrophic scars[J]. Mol Med Rep, 2018, 18(6): 5669-5682.
[29]
Yeh YH, Wang SW, Yeh YC, et al. Rhapontigenin inhibits TGF-β-mediated epithelial-mesenchymal transition via the PI3K/AKT/mTOR pathway and is not associated with HIF-1α degradation[J]. Oncol Rep, 2016, 35(5): 2887-2895.
[30]
Baek SH, Ko JH, Lee JH, et al. Ginkgolic acid inhibits invasion and migration and TGF-beta-induced EMT of lung cancer cells through PI3K/Akt/mTOR inactivation[J]. J Cell Physiol, 2017, 232(2): 346-354.
[31]
Kristensen LS, Okholm TLH, Venø MT, et al. Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation[J]. RNA Biol, 2018, 15(2): 280-291.
[32]
Yang ZG, Awan FM, Du WW, et al. The circular RNA interacts with STAT3, increasing its nuclear translocation and wound repair by modulating Dnmt3a and miR-17 function[J]. Mol Ther, 2017, 25(9): 2062-2074.
[33]
Preuβer C, Hung LH, Schneider T, et al. Selective release of circRNAs in platelet-derived extracellular vesicles[J]. J Extracell Vesicles, 2018, 7(1): 1424473.
[34]
Li S, Chen X, Liu X, et al. Complex integrated analysis of lncRNAs-miRNAs-mRNAs in oral squamous cell carcinoma[J]. Oral Oncol, 2017, 73: 1-9.
[1] 李淼, 朱连华, 韩鹏, 姜波, 费翔. 高帧频超声造影评价肝细胞癌血管形态与风险因素的研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 911-915.
[2] 张卫平, 王婧玲, 刘志兴, 陈莉, 谌芳群. 肾透明细胞癌高帧频超声造影时间-强度曲线特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 916-922.
[3] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[4] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[5] 张华, 孙宇, 乡世健, 李樱媚, 王小群. 循环肿瘤细胞预测晚期胃肠癌患者化疗药物敏感性的研究[J]. 中华普通外科学文献(电子版), 2023, 17(06): 422-425.
[6] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[7] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[8] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[9] 张圣平, 邓琼, 张颖, 张建文, 梁辉, 王铸. 孤儿核受体HNF4α在肾透明细胞癌中的表达及意义[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 627-632.
[10] 辛彩焕, 熊辉. 非疫区36例布鲁菌病患者的临床特征及诊疗分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 927-931.
[11] 杨琬芳, 许晶, 张耀方, 王青, 杨智超, 任方刚, 王宏伟. NK和NKT细胞对急性髓系白血病患者的临床影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 932-938.
[12] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[13] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[14] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
[15] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
阅读次数
全文


摘要