切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2020, Vol. 15 ›› Issue (04) : 312 -315. doi: 10.3877/cma.j.issn.1673-9450.2020.04.016

所属专题: 文献

综述

环状RNA在皮肤相关疾病及创面愈合中的研究进展
于少硕1, 金剑2, 何飞1, 夏照帆1,()   
  1. 1. 200433 上海,海军军医大学第一附属医院烧伤外科,全军烧伤研究所,中国医学科学院烧伤暨烧创复合伤救治关键技术创新单元
    2. 310013 杭州,解放军联勤保障部队第903医院烧伤整形科
  • 收稿日期:2020-06-11 出版日期:2020-08-01
  • 通信作者: 夏照帆
  • 基金资助:
    国家自然科学基金(81930057,81772076)

Research progress of circular RNA in cutaneous diseases and wound healing

Shaoshuo Yu1, Jian Jin2, Fei He1, Zhaofan Xia1,()   

  1. 1. Department of Burn Surgery, Burn Research Institute of PLA, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
    2. Department of Burns and Plastic Surgery, 903rd Hospital of PLA, Hangzhou 310013, China
  • Received:2020-06-11 Published:2020-08-01
  • Corresponding author: Zhaofan Xia
  • About author:
    Corresponding author: Xia Zhaofan, Email:
引用本文:

于少硕, 金剑, 何飞, 夏照帆. 环状RNA在皮肤相关疾病及创面愈合中的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2020, 15(04): 312-315.

Shaoshuo Yu, Jian Jin, Fei He, Zhaofan Xia. Research progress of circular RNA in cutaneous diseases and wound healing[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2020, 15(04): 312-315.

环状RNA(circRNA)为一类具有连续共价闭环结构的新型非编码RNA(ncRNA),无3′及5′游离末端。其可作为微小RNA(miRNA)"分子海绵"调节转录或剪接,也可与RNA结合蛋白相互作用,在机体生理和病理过程中都起着关键作用。近来有研究表明,在与创面愈合相关的细胞(血管内皮细胞、角质细胞)增殖、迁移等活动中,有circRNA参与其中。本文回顾了circRNA在不同类型皮肤细胞中发挥的调节作用及其与皮肤相关疾病如皮肤鳞状细胞癌、基底细胞癌、重度痤疮的联系,旨在为阐释创面愈合的细胞分子机制提供新思路,以期为解决临床上创面治疗难题开拓新方向。

Circular RNA(circRNA) is a novel class of non-coding RNA that assumes a covalently closed continuous loop without 3′ and 5′ free terminus. Some circRNA can serve as microRNA (miRNA) sponges, regulate transcription or splicing, and can interact with RNA binding proteins, thus playing pivotal roles in both physiological and pathological process. Recent studies suggest that circRNA has been involved in cellular activities like proliferation and migration of vascular endothelial cells and keratinocytes, which are associated with wound healing. This article reviewed the roles of circRNA in regulation of different types of skin cells, as well as its interaction with skin diseases like cutaneous squamous cell carcinoma, basal cell carcinoma and severe acne, with the purpose to propose new insights on the cellular and molecular mechanism of wound healing, and to exploit a novel direction in the solution to conundrums of clinical wound management.

[1]
Sorg H, Tilkorn DJ, Hager S, et al. Skin Wound Healing: An Update on the Current Knowledge and Concepts[J]. Eur Surg Res, 2017, 58(1-2): 81-94.
[2]
黄仁燕,郑德. 长链非编码RNA对创面愈合调控作用的研究进展[J]. 成都医学院学报,2017, 12(4): 520-524.
[3]
Wang PH, Huang BS, Horng HC, et al. wound healing[J]. J Chin Med Assoc, 2018, 81(2): 94-101.
[4]
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157.
[5]
Hsiao KY, Sun HS, Tsai SJ. Circular RNA - New member of noncoding RNA with novel functions[J]. Exp Biol Med (Maywood), 2017, 242(11): 1136-1141.
[6]
Qu S, Yang X, Li X, et al. Circular RNA: A new star of noncoding RNAs[J]. Cancer Lett, 2015, 365(2): 141-148.
[7]
Cocquerelle C, Mascrez B, Hétuin D, et al. Mis-splicing yields circular RNA molecules[J]. FASEB J, 1993, 7(1): 155-160.
[8]
Qu S, Zhong Y, Shang R, et al. The emerging landscape of circular RNA in life processes[J]. RNA Biol, 2017, 14(8): 992-999.
[9]
Ebbesen KK, Kjems J, Hansen TB. Circular RNAs: Identification, biogenesis and function[J]. Biochim Biophys Acta, 2016, 1859(1): 163-168.
[10]
Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs[J]. Cell, 2015, 160(6): 1125-1134.
[11]
Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed[J]. Mol Cell, 2015, 58(5): 870-885.
[12]
Wang YH, Yu XH, Luo SS, et al. Comprehensive circular RNA profiling reveals that circular RNA100783 is involved in chronic CD28-associated CD8(+)T cell ageing[J]. Immun Ageing, 2015, 12: 17.
[13]
Burd CE, Jeck WR, Liu Y, et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk[J]. PLoS Genet, 2010, 6(12): e1001233.
[14]
Lukiw WJ. Circular RNA (circRNA) in Alzheimer′s disease (AD)[J]. Front Genet, 2013, 4: 307.
[15]
Wang K, Long B, Liu F, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223[J]. Eur Heart J, 2016, 37(33): 2602-2611.
[16]
Yang W, Du WW, Li X, et al. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis[J]. Oncogene, 2016, 35(30): 3919-3931.
[17]
An X, Liu X, Ma G, et al. Upregulated circular RNA circ_0070934 facilitates cutaneous squamous cell carcinoma cell growth and invasion by sponging miR-1238 and miR-1247-5p[J]. Biochem Biophys Res Commun, 2019, 513(2): 380-385.
[18]
Sand M, Bechara FG, Gambichler T, et al. Circular RNA expression in cutaneous squamous cell carcinoma[J]. J Dermatol Sci, 2016, 83(3): 210-218.
[19]
Sand M, Bechara FG, Sand D, et al. Circular RNA expression in basal cell carcinoma[J]. Epigenomics, 2016, 8(5): 619-632.
[20]
Liang J, Wu X, Sun S, et al. Circular RNA expression profile analysis of severe acne by RNA-seq and bioinformatics[J]. J Eur Acad Dermatol Venereol, 2018, 32(11): 1986-1992.
[21]
Maiese K. Disease onset and aging in the world of circular RNAs[J]. J Transl Sci, 2016, 2(6): 327-329.
[22]
Peng Y, Song X, Zheng Y, et al. Circular RNA profiling reveals that circCOL3A1-859267 regulate type I collagen expression in photoaged human dermal fibroblasts[J]. Biochem Biophys Res Commun, 2017, 486(2): 277-284.
[23]
Liu C, Yao MD, Li CP, et al. Silencing Of Circular RNA-ZNF609 Ameliorates Vascular Endothelial Dysfunction[J]. Theranostics, 2017, 7(11): 2863-2877.
[24]
Dang RY, Liu FL, Li Y. Circular RNA hsa_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186/HIF-1α axis[J]. Biochem Biophys Res Commun, 2017, 490(2): 104-110.
[25]
Morissette Martin P, Maux A, Laterreur V, et al. Enhancing repair of full-thickness excisional wounds in a murine model: Impact of tissue-engineered biological dressings featuring human differentiated adipocytes[J]. Acta Biomater, 2015, 22: 39-49.
[26]
Zhang X, Chen L, Xiao B, et al. Circ_0075932 in adipocyte-derived exosomes induces inflammation and apoptosis in human dermal keratinocytes by directly binding with PUM2 and promoting PUM2-mediated activation of AuroraA/NF-κB pathway[J]. Biochem Biophys Res Commun, 2019, 511(3): 551-558.
[27]
Li J, Chen L, Cao C, et al. The long non-coding RNA LncRNA8975-1 is upregulated in hypertrophic scar fbroblasts and controls collagen expression[J]. Cell Physiol Biochem, 2016, 40(1-2): 326-334.
[28]
Li M, Wang J, Liu D, et al. High-throughput sequencing reveals differentially expressed lncRNAs and circRNAs, and their associated functional network, in human hypertrophic scars[J]. Mol Med Rep, 2018, 18(6): 5669-5682.
[29]
Yeh YH, Wang SW, Yeh YC, et al. Rhapontigenin inhibits TGF-β-mediated epithelial-mesenchymal transition via the PI3K/AKT/mTOR pathway and is not associated with HIF-1α degradation[J]. Oncol Rep, 2016, 35(5): 2887-2895.
[30]
Baek SH, Ko JH, Lee JH, et al. Ginkgolic acid inhibits invasion and migration and TGF-beta-induced EMT of lung cancer cells through PI3K/Akt/mTOR inactivation[J]. J Cell Physiol, 2017, 232(2): 346-354.
[31]
Kristensen LS, Okholm TLH, Venø MT, et al. Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation[J]. RNA Biol, 2018, 15(2): 280-291.
[32]
Yang ZG, Awan FM, Du WW, et al. The circular RNA interacts with STAT3, increasing its nuclear translocation and wound repair by modulating Dnmt3a and miR-17 function[J]. Mol Ther, 2017, 25(9): 2062-2074.
[33]
Preuβer C, Hung LH, Schneider T, et al. Selective release of circRNAs in platelet-derived extracellular vesicles[J]. J Extracell Vesicles, 2018, 7(1): 1424473.
[34]
Li S, Chen X, Liu X, et al. Complex integrated analysis of lncRNAs-miRNAs-mRNAs in oral squamous cell carcinoma[J]. Oral Oncol, 2017, 73: 1-9.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 罗王宇, 赵乐, 杨柳, 张晓磊. 信号转导和转录激活因子3在牙发育中的机制研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 357-361.
[3] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[4] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[5] 冯旺, 马振中, 汤林花. CT扫描三维重建在肝内胆管细胞癌腹腔镜肝切除术中的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 104-107.
[6] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[7] 王玲艳, 高春晖, 冯雪园, 崔鑫淼, 刘欢, 赵文明, 张金库. 循环肿瘤细胞在乳腺癌新辅助及术后辅助治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 630-633.
[8] 赖全友, 高远, 汪建林, 屈士斌, 魏丹, 彭伟. 三维重建技术结合腹腔镜精准肝切除术对肝癌患者术后CD4+、CD8+及免疫球蛋白水平的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 651-654.
[9] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[10] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[11] 李一帆, 朱帝文, 任伟新, 鲍应军, 顾俊鹏, 张海潇, 曹耿飞, 阿斯哈尔·哈斯木, 纪卫政. 血GP73水平在原发性肝癌TACE疗效评价中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 825-830.
[12] 张颖, 赵鑫, 陈佳梅, 李雁. 术前化疗对CRS+HIPEC 治疗腹膜假黏液瘤预后影响的meta 分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 826-835.
[13] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[14] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[15] 丁洪基, 赵长江, 孙鹏飞, 王灿, 王贵珍, 李龙龙. 细胞焦亡与疾病的关系研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 682-686.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?