切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2020, Vol. 15 ›› Issue (05) : 407 -410. doi: 10.3877/cma.j.issn.1673-9450.2020.05.015

所属专题: 文献

综述

3D打印技术在胸壁重建中的研究进展
单一波1, 蒋薛伟1, 虞桂平1,()   
  1. 1. 214400 江阴市人民医院胸心外科
  • 收稿日期:2020-07-25 出版日期:2020-10-01
  • 通信作者: 虞桂平
  • 基金资助:
    江苏省青年医学重点人才项目(QNRC2016135); 无锡市卫生健康委员会卫生科研项目(面上项目MS201906)

Current progress of 3D printing technology in chest wall reconstruction

Yibo Shan1, Xuewei Jiang1, Guiping Yu1,()   

  1. 1. Department of Cardiothoracic Surgery, Jiangyin People′s Hospital, Jiangyin 214400, China
  • Received:2020-07-25 Published:2020-10-01
  • Corresponding author: Guiping Yu
  • About author:
    Corresponding author: Yu Guiping, Email:
引用本文:

单一波, 蒋薛伟, 虞桂平. 3D打印技术在胸壁重建中的研究进展[J]. 中华损伤与修复杂志(电子版), 2020, 15(05): 407-410.

Yibo Shan, Xuewei Jiang, Guiping Yu. Current progress of 3D printing technology in chest wall reconstruction[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2020, 15(05): 407-410.

肋骨的先天畸形、发育不良、外伤、原发或继发的肿瘤性病变等各种原因导致的胸壁缺损会破坏胸廓完整性和稳定性,严重威胁患者的生活质量和生命健康,因此常需进行胸壁重建。随着3D打印工艺的不断优化和材料学研究的不断进展,3D打印的胸骨、肋骨、胸肋骨联合重建等临床工作可实现胸廓外观与功能的双重重建。本文就3D打印技术在胸壁重建中的研究进展作一综述。

The chest wall defect, which result from congenital malformation, dysplasia, trauma, primary or secondary tumor, will destroy the integrity and stability of the thorax and seriously threaten the life quality and health of patients. Therefore, reconstruction of the chest wall is necessary. With optimization of 3D printing technology and breakthroughs in materials science, joint reconstruction of sternum, rib, chest rib and other clinical work can be accomplished by 3D printing, thus repairing the outward appearance and function of the thorax. This review focuses on the current advances of 3D printing technology in chest wall reconstruction.

[7]
Wang X. Advanced Polymers for Three-Dimensional (3D) Organ Bioprinting[J]. Micromachines (Basel), 2019, 10(12): pii: E814.
[8]
Parr WCH, Burnard JL, Wilson PJ, et al. 3D printed anatomical (bio)models in spine surgery: clinical benefits and value to health care providers[J]. J Spine Surg, 2019, 5(4): 549-560.
[9]
Pastor-Artigues MM, Roure-Fernández F, Ayneto-Gubert X, et al. Elastic Asymmetry of PLA Material in FDM-Printed Parts: Considerations Concerning Experimental Characterisation for Use in Numerical Simulations[J]. Materials (Basel), 2019, 13(1): pii: E15.
[10]
Fereiduni E, Ghasemi A, Elbestawi M. Characterization of Composite Powder Feedstock from Powder Bed Fusion Additive Manufacturing Perspective[J]. Materials (Basel), 2019, 12(22): pii: E3673.
[11]
Zhang S, Li M, Hao N, et al. Stereolithography 3D Printing of Lignin-Reinforced Composites with Enhanced Mechanical Properties[J]. ACS Omega, 2019, 4(23): 20197-20204.
[12]
Chen SG, Yang J, Jia YG, et al. TiO2 and PEEK Reinforced 3D Printing PMMA Composite Resin for Dental Denture Base Applications[J]. Nanomaterials (Basel), 2019, 9(7): pii: E1049.
[13]
Han X, Yang D, Yang C, et al. Carbon Fiber Reinforced PEEK Composites Based on 3D-Printing Technology for Orthopedic and Dental Applications[J]. J Clin Med, 2019, 8(2): pii: E240.
[14]
Stefan P, Pfandler M, Lazarovici M, et al. Three-dimensional-Printed Computed Tomography-Based Bone Models for Spine Surgery Simulation[J]. Simul Healthc, 2020, 15(1): 61-66.
[15]
Pan S, Zhong Y, Shan Y, et al. Selection of the optimum 3D-printed pore and the surface modification techniques for tissue engineering tracheal scaffold in vivo reconstruction[J]. J Biomed Mater Res A, 2019, 107(2): 360-370.
[16]
Zabaleta J, Aguinagalde B, López I, et al. Creation of a multidisciplinary and multicenter study group for the use of 3D printing in general thoracic surgery: lessons learned in our first year experience[J]. Med Devices (Auckl), 2019, 12: 143-149.
[17]
Bernhard JC, Isotani S, Matsugasumi T, et al. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education[J]. World J Urol, 2016, 34(3): 337-345.
[18]
Leuzzi G, Nachira D, Cesario A, et al. Chest wall tumors and prosthetic reconstruction: A comparative analysis on functional outcome[J]. Thorac Cancer, 2015, 6(3): 247-254.
[19]
Suzuki K, Park BJ, Adusumilli PS, et al. Chest wall reconstruction using a methyl methacrylate neo-rib and mesh[J]. Ann Thorac Surg, 2015, 100(2): 744-747.
[20]
Makarawo TP, Reynolds RA, Cullen ML. Polylactide bioabsorbable struts for chest wall reconstruction in a pediatric patient[J]. Ann Thorac Surg, 2015, 99(2): 689-691.
[21]
Rocco G, La Rocca A, La Manna C, et al. Arena roof technique for complex reconstruction after extensive chest wall resection[J]. Ann Thorac Surg, 2015, 100(4): 1479-1481.
[22]
Li W, Zhang G, Ye C, et al. Autogenous rib graft for reconstruction of sternal defects[J]. J Thorac Dis, 2014, 6(12): 1851-1852.
[23]
Kwok IH, Pallett SJ, Massa E, et al. Pre-operative digital templating in cemented hip hemiarthroplasty for neck of femur fractures[J]. Injury, 2016, 47(3): 733-736.
[24]
Moradiellos J, Amor S, Córdoba M, et al. Functional Chest Wall Reconstruction With a Biomechanical Three-Dimensionally Printed Implant[J]. Ann Thorac Surg, 2017, 103(4): e389-e391.
[25]
Honigmann P, Sharma N, Okolo B, et al. Patient-Specific Surgical Implants Made of 3D Printed PEEK: Material, Technology, and Scope of Surgical Application[J]. Biomed Res Int, 2018: 4520636
[26]
Chen SG, Yang J, Jia YG, et al. TiO2 and PEEK Reinforced 3D Printing PMMA Composite Resin for Dental Denture Base Applications[J]. Nanomaterials (Basel), 2019, 9(7): pii: E1049.
[27]
Song KJ, Kim GH, Choi BY. Efficacy of PEEK cages and plate augmentation in three-level anterior cervical fusion of elderly patients[J]. Clin Orthop Surg, 2011, 3(1): 9-15.
[28]
Han X, Sharma N, Xu Z, et al. An In Vitro Study of Osteoblast Response on Fused-Filament Fabrication 3D Printed PEEK for Dental and Cranio-Maxillofacial Implants[J]. J Clin Med, 2019, 8(6): pii: E771.
[29]
Gao A, Liao Q, Xie L, et al. Tuning the surface immunomodulatory functions of polyetheretherketone for enhanced osseointegration[J]. Biomaterials, 2020, 230: 119642.
[30]
Han X, Yang D, Yang C, et al. Carbon Fiber Reinforced PEEK Composites Based on 3D-Printing Technology for Orthopedic and Dental Applications[J]. J Clin Med, 2019, 8(2): pii: E240.
[31]
Jung HD, Jang TS, Lee JE, et al. Enhanced bioactivity of titanium-coated polyetheretherketone implants created by a high-temperature 3D printing process[J]. Biofabrication, 2019, 11(4): 045014.
[32]
Chon JW, Yang X, Lee SM, et al. Novel PEEK Copolymer Synthesis and Biosafety - I: Cytotoxicity Evaluation for Clinical Application[J]. Polymers (Basel), 2019, 11(11): pii: E1803.
[33]
Ma J, Liang Q, Qin W, et al. Bioactivity of nitric acid and calcium chloride treated carbon-fibers reinforced polyetheretherketone for dental implant[J]. J Mech Behav Biomed Mater, 2019, 102: 103497.
[34]
Basgul C, Yu T, MacDonald DW, et al. Structure-Property Relationships for 3D printed PEEK Intervertebral Lumbar Cages Produced using Fused Filament Fabrication[J]. J Mater Res, 2018, 33(14): 2040-2051.
[35]
Lipinska J, Kutwin L, Wawrzycki M, et al. Chest reconstruction using a custom-designed polyethylene 3D implant after resection of the sternal manubrium[J]. Onco Targets Ther, 2017, 10: 4099-103.
[36]
王少强,陈静,魏松洋,等. 胸壁肿瘤切除后胸壁缺损的修复[J]. 组织工程与重建外科杂志,2019, 15(4): 237-240.
[37]
Thomas M, Shen KR. Primary tumors of the osseous chest wall and their management [J]. Thorac Surg Clin, 2017, 27(2): 181-193.
[38]
Cipriano A, Burfeind W Jr. Management of primary soft tissue tumors of the chest wall [J]. Thorac Surg Clin, 2017, 27(2): 139-147.
[1]
Petrella F, Lo Iacono G, Casiraghi M, et al. Chest wall resection and reconstruction by composite prosthesis for locally recurrent breast carcinoma[J]. J Thorac Dis, 2020, 12(1): 39-41.
[2]
Wen X, Gao S, Feng J, et al. Chest-wall reconstruction with a customized titanium-alloy prosthesis fabricated by 3D printing and rapid prototyping[J]. J Cardiothorac Surg, 2018, 13(1): 4.
[3]
王磊,李靖,钟代星. 胸壁肿瘤切除及胸壁重建手术中国专家共识(2018版)[J]. 中国胸心血管外科临床杂志,2019, 26(1): 1-7.
[4]
钟代星,王磊,李小飞,等. 胸壁骨性重建的研究进展[J]. 中国肺癌杂志,2018, 21(4): 273-276.
[5]
黎吉娜,叶曼,熊学兰,等. 胸部肿瘤切除联合3D打印碳纤维胸壁重建术患者的护理[J]. 护理学杂志,2019, 34(1): 42-43, 65.
[6]
Choy WJ, Parr WCH, Phan K, et al. 3-dimensional printing for anterior cervical surgery: a review[J]. J Spine Surg, 2018, 4(4): 757-769.
[39]
Wald O, Islam I, Amit K, et al. 11-year experience with Chest Wall resection and reconstruction for primary Chest Wall sarcomas[J]. J Cardiothorac Surg, 2020, 15(1): 29.
[40]
Ahmad SB, Hoellwarth J, Christie N, et al. Radical resection of a giant rib osteosarcoma with complex chest wall reconstruction[J]. Int J Surg Case Rep, 2019, 62: 17-20.
[41]
Wang L, Huang L, Li X, et al. Three-Dimensional Printing PEEK Implant: A Novel Choice for the Reconstruction of Chest Wall Defect[J]. Ann Thorac Surg, 2019, 107(3): 921-928.
[42]
Kang J, Wang L, Yang C, et al. Custom design and biomechanical analysis of 3D-printed PEEK rib prostheses[J]. Biomech Model Mechanobiol, 2018, 17(4): 1083-1092.
[43]
李涤尘,杨春成,康建峰,等. 大尺寸个体化PEEK植入物精准设计与控制定制研究[J]. 机械工程学报,2018, 54(23): 121-125.
[1] 黄子荣, 罗渝鑫, 杨文瀚, 陈小虎, 谢环宇, 朱伟民. 前交叉韧带重建对膝关节稳定性影响的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 847-854.
[2] 贺敬龙, 尚宏喜, 郝敏, 谢伟, 高明宏, 孙炜, 刘安庆. 重度类风湿关节炎患者行多关节置换术的临床手术疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 860-864.
[3] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[4] 周岩冰, 刘晓东. 腹腔镜右半结肠癌D3根治术消化道吻合重建方式的选择[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 9-13.
[5] 逄世江, 黄艳艳, 朱冠烈. 改良π形吻合在腹腔镜全胃切除消化道重建中的安全性和有效性研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 66-69.
[6] 莫波, 王佩, 王恒, 何志军, 梁俊, 郝志楠. 腹腔镜胃癌根治术与改良胃癌根治术治疗早期胃癌的疗效[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 644-647.
[7] 索郎多杰, 高红桥, 巴桑顿珠, 仁桑. 腹腔镜下不同术式治疗肝囊型包虫病的临床疗效分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 670-673.
[8] 唐浩, 梁平, 徐小江, 曾凯, 文拨辉. 三维重建指导下腹腔镜右半肝加尾状叶切除治疗Bismuth Ⅲa型肝门部胆管癌的临床研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 688-692.
[9] 李三祥, 李佳, 刘俊峰, 吕东晨, 方晖东, 谭朝晖, 刘杰, 潘佐, 乔建坤. 基于CT影像的三维重建成像技术在腹腔镜大肾上腺肿瘤切除术中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 570-574.
[10] 张晟, 穆祝萍. 两种联合治疗子宫脱垂伴压力性尿失禁手术方法的对照研究[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 728-733.
[11] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[12] 胡建生, 周佐霖, 孙林梅, 马腾辉. 不同诊断分型的慢性放射性直肠损伤临床治疗转归:85例回顾性分析[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 466-472.
[13] 邱红生, 林树体, 梁朝莹, 劳世高, 何荷. 模拟现实步态训练对膝关节前交叉韧带损伤的功能恢复及对跌倒恐惧的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 343-350.
[14] 李岩松, 李涛, 张元鸣飞, 李志鹏, 周谋望. 头戴式虚拟现实设备辅助全膝关节置换术后康复的初步研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 676-681.
[15] 李莹倩, 李华山. 基于真实世界的完全性直肠脱垂治疗方式评价[J]. 中华临床医师杂志(电子版), 2023, 17(06): 700-705.
阅读次数
全文


摘要