[1] |
IDF Diabetes Atlas. IDF Diabetes Atlas 10th Edition[EB/OL]. (2021-12-06) [2022-05-21].
URL
|
[2] |
王天歌,陆洁莉,毕宇芳,等. 中国糖尿病持续攀升新解:中年肥胖相关胰岛素抵抗成为主要威胁[J]. 中华内分泌代谢杂志,2020, 36(3): 198-200.
|
[3] |
American Diabetes Association. Economic Costs of Diabetes in the U.S. in 2017[J]. Diabetes Care, 2018, 41(5): 917-928.
|
[4] |
Neel JV. Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress" ?[J]. Am J Hum Genet, 1962, 14(4): 353-362.
|
[5] |
Venniyoor A. PTEN: A Thrifty Gene That Causes Disease in Times of Plenty?[J]. Front Nutr, 2020, 7: 81.
|
[6] |
García-Chapa EG, Leal-Ugarte E, Peralta-Leal V, et al. Genetic Epidemiology of Type 2 Diabetes in Mexican Mestizos[J]. Biomed Res Int, 2017, 2017: 3937893.
|
[7] |
公安部交通管理局. 2021年全国机动车保有量达3.95亿新能源汽车同比增59.25%[EB/OL]. (2022-01-11) [2022-04-23].
URL
|
[8] |
Sugiyama T, Ding D, Owen N. Commuting by car: weight gain among physically active adults[J]. Am J Prev Med, 2013, 44(2): 169-173.
|
[9] |
Domingues-Montanari S. Clinical and psychological effects of excessive screen time on children[J]. J Paediatr Child Health, 2017, 53(4): 333-338.
|
[10] |
Uusitupa M, Khan TA, Viguiliouk E, et al. Prevention of Type 2 Diabetes by Lifestyle Changes: A Systematic Review and Meta-Analysis[J]. Nutrients, 2019, 11(11): 2611.
|
[11] |
Salas-Salvadó J, Bulló M, Babio N, et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial[J]. Diabetes Care, 2011, 34(1): 14-19.
|
[12] |
Rossi M, Turati F, Lagiou P, et al. Mediterranean diet and glycaemic load in rela-tion to incidence of type 2 diabetes: results from the Greed cohort of the population-ba-sed European Prospective Investigation into Cancer And Nutrition (EPIC)[J]. Diabetologia, 2013, 56(11): 2405-2413.
|
[13] |
Tan CH, Kyaw BM, Smith H, et al. Use of Smartphones to Detect Diabetic Retinopathy: Scoping Review and Meta-Analysis of Diagnostic Test Accuracy Studies[J]. J Med Internet Res, 2020, 22(5): e16658.
|
[14] |
Yew TW, Chi C, Chan SY, et al. A Randomized Controlled Trial to Evaluate the Effects of a Smartphone Application-Based Lifestyle Coaching Program on Gestational Weight Gain, Glycemic Control, and Maternal and Neonatal Outcomes in Women With Gestational Diabetes Mellitus: The SMART-GDM Study[J]. Diabetes Care, 2021, 44(2): 456-463.
|
[15] |
Höchsmann C, Walz SP, Schäfer J, et al. Mobile Exergaming for Health-Effects of a serious game application for smartphones on physical activity and exercise adherence in type 2 diabetes mellitus-study protocol for a randomized controlled trial[J]. Trials, 2017, 18(1): 103.
|
[16] |
Apelqvist J, Bakker K, van Houtum WH, et al. International consensus and practical guidelines on the management and the prevention of the diabetic foot[J]. Diabetes Metab Res Rev, 2000, 16 Suppl 1: S84-92.
|
[17] |
Moxey PW, Gogalniceanu P, Hinchliffe RJ, et al. Lower extremity amputations—a review of global variability in incidence[J]. Diabet Med, 2011, 28(10): 1144-1153.
|
[18] |
Armstrong DG, Boulton AJM, Bus SA. Diabetic Foot Ulcers and Their Recurrence[J]. N Engl J Med, 2017, 376(24): 2367-2375.
|
[19] |
Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence[J]. N Engl J Med, 2017, 376(24): 2367-2375.
|
[20] |
Ducic I, Attinger CE. Foot and ankle reconstruction: pedicled muscle flaps versus free flaps and the role of diabetes[J]. Plast Reconstr Surg, 2011, 128(1): 173-180.
|
[21] |
YuanM, Liu K, Jiang T, et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing[J]. J Nanobiotechnology, 2022, 20(1): 147.
|
[22] |
Shiekh PA, Singh A, Kumar A. Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing[J]. Biomaterials, 2020, 249: 120020.
|
[23] |
Kirby GT, Mills SJ, Cowin AJ, et al. Stem cells for cutaneous wound healing[J]. Biomed Res Int, 2015, 2015: 285869.
|
[24] |
Choudhery MS, Badowski M, Muise A, et al. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation[J]. J Transl Med, 2014, 12: 8.
|
[25] |
Beane OS, Fonseca VC, Cooper LL, et al. Impact of aging on the regenerative properties of bone marrow, muscle, and adipose-derived mesenchymal stem/stromal cells[J]. PLoS One, 2014, 9(12): e115963.
|
[26] |
Duscher D, Rennert RC, Januszyk M, et al. Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells[J]. Sci Rep, 2014, 4: 7144.
|
[27] |
Yan J, Tie G, Wang S, et al. Type 2 diabetes restricts multipotency of mesenchymal stem cells and impairs their capacity to augment postischemic neovascularization in db/db mice[J]. J Am Heart Assoc, 2012, 1(6): e002238.
|
[28] |
Lopes L, Setia O, Aurshina A, et al. Stem cell therapy for diabetic foot ulcers: a review of preclinical and clinical research[J]. Stem Cell Res Ther, 2018, 9(1): 188.
|
[29] |
Goodall RJ, Ellauzi J, Tan MKH, et al. A Systematic Review of the Impact of Foot Care Education on Self Efficacy and Self Care in Patients With Diabetes[J]. Eur J Vasc Endovasc Surg, 2020, 60(2): 282-292.
|
[30] |
孙迎放. 糖尿病足外科治疗的相关问题[J/CD]. 中华损伤与修复杂志(电子版), 2012, 7(2): 7-10.
|