切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (06) : 490 -495. doi: 10.3877/cma.j.issn.1673-9450.2022.06.005

论著

双粗通道减压植骨+结构性骨支撑治疗早期股骨头坏死疗效分析
孙强1, 郭晓忠2,(), 王冉东1, 李兵1, 岳聚安1, 刘忘言1, 陈蛟1   
  1. 1. 100012 北京,航空总医院骨关节科
    2. 100012 北京,航空总医院骨关节科;100035 北京积水潭医院矫形骨科
  • 收稿日期:2022-09-15 出版日期:2022-12-01
  • 通信作者: 郭晓忠
  • 基金资助:
    首都医学发展科研基金(2009-3098); 航空总医院院级课题(YJ202018)

Effect analysis of double channel decompression and bone grafting plus structural bone support in the treatment of early osteonecrosis of the femoral head

Qiang Sun1, Xiaozhong Guo2,(), Randong Wang1, Bing Li1, Ju′an Yue1, Wangyan Liu1, Jiao Chen1   

  1. 1. Department of Bone and Joint Surgery, Aviation General Hospital, Beijing 100012, China
    2. Department of Bone and Joint Surgery, Aviation General Hospital, Beijing 100012, China; Department of Orthopaedics, Beijng Jishuitan Hospital, Beijing 100035, China
  • Received:2022-09-15 Published:2022-12-01
  • Corresponding author: Xiaozhong Guo
引用本文:

孙强, 郭晓忠, 王冉东, 李兵, 岳聚安, 刘忘言, 陈蛟. 双粗通道减压植骨+结构性骨支撑治疗早期股骨头坏死疗效分析[J/OL]. 中华损伤与修复杂志(电子版), 2022, 17(06): 490-495.

Qiang Sun, Xiaozhong Guo, Randong Wang, Bing Li, Ju′an Yue, Wangyan Liu, Jiao Chen. Effect analysis of double channel decompression and bone grafting plus structural bone support in the treatment of early osteonecrosis of the femoral head[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(06): 490-495.

目的

分析双粗通道减压植骨+结构性骨支撑治疗早期股骨头坏死(ONFH)的临床疗效。

方法

依据纳入与排除标准,选择自2016年10月至2020年10月在航空总医院骨关节科行双粗通道减压植骨+结构性骨支撑治疗的早期ONFH患者93例(133髋)纳入研究,其中国际骨循环研究会(ARCO)分期:Ⅱ期60髋,Ⅲ期73髋;中日友好医院(CJFH)分型:C型20髋,L1型42髋,L2型49髋,L3型22髋。患者麻醉后,首先将直径10 mm的髓心减压钻头自大粗隆外侧沿前内侧导针扩髓直至软骨下方3 mm左右,应用植骨器将7.5 mg同种异体松质骨骨粒经减压通道植入坏死区域;然后将直径10 mm的髓心减压钻头自大粗隆外侧沿前外侧导针扩髓直至软骨下方3 mm左右,将2.5 mg骨粒植入通道顶部压实,选择合适长度的支撑棒沿着导针插入外上道并拧紧,取出导针再次透视确保支撑棒位置良好,冲洗并缝合切口。分析比较术前及末次随访时所有患者、不同ARCO分期、不同CJFH分型早期ONFH患者Harris髋关节功能评分。分析比较末次随访时所有患者、不同ARCO分期、不同CJFH分型早期ONFH患者的影像学进展率与保髋成功率。数据行配对t检验、χ2检验。

结果

随访时间平均(29.26±10.02)个月。末次随访时,患者总体Harris髋关节功能评分由术前(78.99±13.50)分提高到(82.49±17.18)分,差异有统计学意义(t=-1.890,P=0.021)。术前及末次随访时ARCO Ⅱ期患者Harris评分比较,差异无统计学意义(t=0.944,P=0.349),ARCO Ⅲ期患者Harris髋关节功能评分由术前(73.83±10.98)分提高到(82.43±17.72)分,差异有统计学意义(t=-3.797,P<0.05)。末次随访时CJFH分型中C型、L2型、L3型患者术前及末次随访时的Harris髋关节功能评分比较,差异均无统计学意义(t=-1.855、-0.639、1.749,P=0.079、0.526、0.095)。L1型患者末次随访时Harris髋关节功能评分为(87.45±15.27)分,较术前[(79.11±13.36)分]明显提高,差异有统计学意义(t=-2.393,P=0.010)。通过影像学评估,末次随访时影像学总体进展率为27.07%(36/133)。ARCO Ⅱ期患者的影像学进展率为26.67%(16/60),ARCO Ⅲ期患者的影像学进展为27.40%(20/73),ARCO Ⅱ期和ARCO Ⅲ期患者的影像学进展率比较差异无统计学意义(χ2=0.009,P=1.000)。通过CJFH分型分析,不同CJFH分型的早期ONFH患者术后影像学进展率由高到低依次是L3型50.00%(11/22)、L2型30.61%(15/49)、L1型16.67%(7/42)、C型15.00%(3/20),差异有统计学意义(χ2=9.950,P=0.018)。末次随访时共18髋行全髋关节置换术(THA),平均时间为术后(18.17±8.22)个月,保髋成功率为86.47%(115/133)。ARCO Ⅱ期患者的保髋成功率为90.00%(54/60),ARCO Ⅲ期患者的保髋成功率为83.56%(61/73),ARCO Ⅱ期和ARCO Ⅲ期患者的保髋成功率比较差异无统计学意义(χ2=1.167,P=0.318)。根据CJFH分型分析发现,不同CJFH分型的早期ONFH患者的保髋成功率由高到低依次为L1型95.24%(40/42)、C型90.00% (18/20)、L2型87.76%(43/49)、L3型63.64%(14/22),差异有统计学意义(χ2=11.085,P=0.015)。

结论

双粗通道减压植骨+结构性骨支撑是延缓甚至终止早期ONFH自然进展的有效方法,尤其适用于ARCOⅢ期及CJFH分型C型、L1型、L2型患者。

Objective

To analyze the clinical efficacy of double channel decompression and bone grafting plus structural bone support in the treatment of early osteonecrosis of the femoral head(ONFH).

Methods

According to the inclusion and exclusion criteria, a total of 93 patients (133 hips) with early ONFH who underwent double channel decompression and bone grafting plus structural bone support in the Department of Bone and Joint Surgery, Aviation General Hospital from October 2016 to October 2020 were enrolled in the study, including Association Research Circulation Osseous (ARCO) stage Ⅱ 60 hips, ARCO stage Ⅲ 73 hips, China-Japan Friend ship Hospital (CJFH) type: type C 20 hips, type L1 42 hips, type L2 49 hips, type L3 22 hips. After the anesthesia was taken for the patients, firstly, the 10 mm diameter midullary decompression drill bit was used to reamer the medullary along the anteromaterial guide needle on the outside of the greater trochanter until about 3 mm below the cartilage. A 7.5 mg allogeneic scellous bone granules was implanted into the necrotic area through a decompression channel with a bone grafting. Then, the 10 mm diameter midullary decompression drill bit was used to reamer the medullary along the anterolateral guide needle on the outside of the greater trochanter until about 3 mm below the cartilage. The 2.5 mg bone granules were implanted at the top of the channel and compacted. A support rod of appropriate length was inserted into the second channel along the guide wire and tightened. The guide wire was removed and fluoroscoped again to ensure that the support rod was in good position. Harris hip function scores of all ONFH patients, different ARCO stages and CJFH types of early ONFH patients were compared before operation and at last follow-up respectively. The imaging progression rate and hip preservation success rate of all ONFH patients, different ARCO stages and CJFH types of early ONFH patients were compared before operation and at last follow-up respectively. Data were processed with paired t test and chi-square test.

Results

The mean follow-up was (29.26±10.02) months. At the last follow-up, Harris hip function scores of patients was changed from (78.99±13.50) points before operation to (82.49±17.18) points, the difference was statistically significant (t=-1.890, P=0.021). There was no statistically significant difference in Harris hip function scores between ARCO stage Ⅱ patients before operation and at last follow-up (t= 0.944, P=0.349). The Harris hip function score of ARCO stage Ⅲ patients at last follow-up was (82.43±17.72) points, which was significantly higher than that before surgery [(73.83±10.98) points], and the difference was statistically significant (t=-3.797, P<0.05). There were no statistically significant differences in Harris hip function scores between patients with type C, L2 and L3 of CJFH types before operation and at last follow-up (t=-1.855, -0.639, 1.749; P=0.079, 0.526, 0.095). Harris hip function score of type L1 patients at last follow-up was (87.45±15.27) points, which was significantly higher than that before operation [(79.11±13.36) points], and the difference was statistically significant (t=-2.393, P=0.010). As assessed by imaging, the overall imaging progression rate was 27.07% (36/133) at last follow-up. The imaging progression rate of ARCO stage Ⅱ and ARCO stage Ⅲ were 26.67%(16/60) and 27.40%(20/73), there was no statistically significant difference in the imaging progression rate between the two stages (χ2=0.009, P=1.000). According to CJFH types analysis, the postoperative imaging progression rates of early ONFH patients were type L3 50.00%(11/22), type L2 30.61%(15/49), type L1 16.67%(7/42), type C 15.00%(3/20) from high to low. There were statistically significant differences in imaging progression rates among different CJFH types (χ2=9.950, P=0.018). At the last follow-up, 18 hips underwent total hip orthroplasty (THA), and the average time was (18.17±8.22) months. The overall success rate was 86.47% (115/133). The success rates of ARCO stage Ⅱ and ARCO stage Ⅲ were 90.00%(54/60) and 83.56% (61/73), there was no statistically significant difference in the success rates between the two stages (χ2=1.167, P=0.318). According to CJFH types analysis, the success rate of different CJFH types were type L1 95.24%(40/42), type C 90.00%(18/20), type L2 87.76%(43/49), type L3 63.64%(14/22) from high to low and the differences were statistically significant (χ2=11.085, P=0.015).

Conclusion

Double rough channel decompression and bone grafting plus structural bone support is an effective method to delay or even stop the natural progression of early ONFH, especially for patients with ARCO stage Ⅲ and type C, L1 and L2 with CJFH type.

图1 双粗通道减压植骨+结构性骨支撑手术操作流程图。A示自大粗隆外侧经股骨颈向ONFH内下区域钻入第1枚导针;B示髓心减压钻头沿导针扩髓直至软骨下方3 mm左右;C示植骨器内下通道植骨,将7.5 mg同种异体松质骨骨粒植入坏死区域;D示第2枚导针自同一进针点钻入直至ONFH的外上区域;E示髓心减压钻头沿第2枚导针扩髓直至软骨下方3 mm左右;F示于外上通道顶端植骨;G示股骨近端扩孔与支撑棒尾端螺纹相匹配;H示选择合适的支撑插入外上通道内拧紧尾端;ONFH为股骨头坏死
表1 不同分型和分期早期ONFH患者术前及末次随访时Harris髋关节功能评分比较(分,±s)
[1]
Yoo MC, Kim KI, Hahn CS, et al. Long-term followup of vascularized fibular grafting for femoral head necrosis[J]. Clin Orthop Relat Res, 2008, 466(5): 1133-1140.
[2]
Eward WC, Rineer CA, Urbaniak JR, et al. The vascularized fibular graft in precollapse osteonecrosis: is long-term hip preservation possible[J]. Clin Orthop Relat Res, 2012, 470(10): 2819-2826.
[3]
Judet H, Gilbert A. Long-term results of free vascularized fibular grafting for femoral head necrosis[J]. Clin Orthop Relat Res, 2001(386): 114-119.
[4]
Marciniak D, Furey C, Shaffer JW. Osteonecrosis of the femoral head. A study of 101 hips treated with vascularized fibular grafting[J]. J Bone Joint Surg Am, 2005, 87(4): 742-747.
[5]
Phemister DB. Treatment of the necrotic head of the femur in adults[J]. J Bone Joint Surg Am, 1949, 31A(1): 55-66.
[6]
中国医师协会骨科医师分会骨循环与骨坏死专业委员会,中华医学会骨科分会骨显微修复学组,国际骨循环学会中国区. 中国成人股骨头坏死临床诊疗指南(2020)[J]. 中华骨科杂志2020, 40(20): 1365-1376.
[7]
郭晓忠,岳聚安,王冉东,等. 经大粗隆单一入路双孔道减压植骨+异体腓骨支撑治疗早期股骨头坏死的疗效分析[J/CD]. 中华损伤与修复杂志(电子版), 2020, 15(2): 96-102.
[8]
郭晓忠. 股骨头缺血坏死早期微创保头手术的疗效观察[J]. 骨科临床与研究杂志2019, 4(4): 225-231.
[9]
郭晓忠,李兵,岳聚安,等. 髓芯减压植骨加异体腓骨支撑治疗早期股骨头缺血性坏死的单中心长期临床疗效研究[J]. 中华骨与关节外科杂志2018, 11(12): 904-909.
[10]
Yue J, Guo X, Wang R, et al. Single approach to double-channel core decompression and bone grafting with structural bone support for treating osteonecrosis of the femoral head in different stages[J]. J Orthop Surg Res, 2020, 15(1): 198.
[11]
赵德伟,谢辉. 成人股骨头坏死保髋手术治疗的策略及探讨[J]. 中国修复重建外科杂志2018, 32(7): 792-797.
[12]
Cui L, Zhuang Q, Lin J, et al. Multicentric epidemiologic study on six thousand three hundred and ninety five cases of femoral head osteonecrosis in China[J]. Int Orthop, 2016, 40(2): 267-276.
[13]
Zhao DW, Yu M, Hu K, et al. Prevalence of Nontraumatic Osteonecrosis of the Femoral Head and its Associated Risk Factors in the Chinese Population: Results from a Nationally Representative Survey[J]. Chin Med J (Engl), 2015, 128(21): 2843-2850.
[14]
Liu L, Gao F, Sun W, et al. Investigating clinical failure of core decompression with autologous bone marrow mononuclear cells grafting for the treatment of non-traumatic osteonecrosis of the femoral head[J]. Int Orthop, 2018, 42(7): 1575-1583.
[15]
Tomaru Y, Yoshioka T, Sugaya H, et al. Hip preserving surgery with concentrated autologous bone marrow aspirate transplantation for the treatment of asymptomatic osteonecrosis of the femoral head: retrospective review of clinical and radiological outcomes at 6 years postoperatively[J]. BMC Musculoskelet Disord, 2017, 18(1): 292.
[16]
Xu Q, Lu H, Zhang J, et al. Tissue engineering scaffold material of porous nanohydroxyapatite/polyamide 66[J]. Int J Nanomedicine, 2010, 5: 331-335.
[17]
Li J, Li Y, Ma S, et al. Enhancement of bone formation by BMP-7 transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects[J]. J Biomed Mater Res A, 2010, 95(4): 973-981.
[18]
Zhang J, Huang C, Xu Q, et al. Biological properties of a biomimetic membrane for guided tissue regeneration: a study in rat calvarial defects[J]. Clin Oral Implants Res, 2010, 21(4):392-397.
[19]
Zhang JC, Lu HY, Lv GY, et al. The repair of critical-size defects with porous hydroxyapatite/polyamide nanocomposite: an experimental study in rabbit mandibles[J]. Int J Oral Maxillofac Surg, 2010, 39(5): 469-477.
[20]
李子荣. 2015年股骨头坏死中国分期与分型解读[J]. 临床外科杂志2017, 25(8): 565-568.
[21]
刘立华,孙伟,高福强,等. 基于中日友好医院分型的股骨头坏死保髋手术疗效的影响因素分析[J]. 中华骨科杂志2021, 41(5): 271-279.
[22]
张庆宇,高福强,程立明,等. 髓芯减压自体骨髓单个核细胞移植联合打压植骨治疗双侧股骨头坏死[J]. 中华骨科杂志2019, 39(23): 1432-1439.
[1] 丁莹莹, 宋恺, 金姬延, 田华. 机器人辅助膝髋关节置换术后精细化临床护理[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 553-557.
[2] 何甘霖, 陈香侬, 李萍, 甄佳怡, 李京霞, 邹外一, 许多荣. 白血病异基因造血干细胞移植术后股骨坏死的影响因素[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 450-456.
[3] 罗欢, 李川, 蔡兴博, 浦路桥, 孟晨, 赵庆刚, 徐永清. 臀下动脉来源的股骨头后上支持带动脉观察[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 439-444.
[4] 孔德铭, 刘铮, 李睿, 钱文伟, 王飞, 蔡道章, 柴伟. 人工智能辅助全髋关节置换三维术前规划准确性评价[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 431-438.
[5] 刘晓凡. 老年股骨头坏死髋关节置换术后康复应用多维度干预[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 314-319.
[6] 何梦媛, 胡鸿保, 谢庆云, 廖冬发, 王维. 股骨头坏死的代谢组学的相关研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 379-382.
[7] 田志敏, 何淳诺, 李焕玺, 吴昊越, 刘鹏, 乔永杰, 周胜虎, 蓝平衡, 郭氧, 张浩强. 股骨头坏死动物模型研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 383-389.
[8] 刘正宇, 刘春风, 王振. 改良后外侧入路半髋置换治疗股骨颈骨折的早期疗效[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 409-413.
[9] 钟向娣, 任婷婷, 任丽, 刘梦碟, 周娅颖, 游月梅, 张琳玲. 全髋关节置换护理的可视化分析[J/OL]. 中华关节外科杂志(电子版), 2024, 18(02): 256-263.
[10] 卢国良, 潘耀成. 比较不同类型假体用于骨质疏松症的老年股骨颈骨折[J/OL]. 中华关节外科杂志(电子版), 2024, 18(02): 277-279.
[11] 潘韩丽, 何静, 陈媛媛, 贾梦瑶, 赵兴, 杨佩. 机器人辅助全髋关节置换围手术期应用加速康复护理[J/OL]. 中华关节外科杂志(电子版), 2024, 18(01): 142-146.
[12] 许正文, 李振, 侯振扬, 苏长征, 朱彪. 富血小板血浆联合植骨治疗早期非创伤性股骨头坏死[J/OL]. 中华关节外科杂志(电子版), 2023, 17(06): 773-779.
[13] 金鑫, 谢卯, 刘芸, 杨操, 杨述华, 许伟华. 个性化股骨导向器辅助初次全髋关节置换的随机对照研究[J/OL]. 中华关节外科杂志(电子版), 2023, 17(06): 780-787.
[14] 浦路桥, 李川, 齐宝闯, 卜鹏飞, 蔡兴博, 白艳, 罗欢, 徐永清. 改良与传统股方肌骨瓣治疗青壮年股骨头坏死的临床疗效比较[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(03): 165-170.
[15] 张耕毓, 唐冲, 张昆, 张辉, 张清华, 刘家帮. 股骨头坏死髓芯减压术的文献计量学分析及单中心病例报道[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 771-780.
阅读次数
全文


摘要