[1] |
González Olmo BM, Butler MJ, Barrientos RM. Evolution of the Human Diet and Its Impact on Gut Microbiota, Immune Responses, and Brain Health[J]. Nutrients, 2021, 13(1): 196.
|
[2] |
Adiliaghdam F, Cavallaro P, Mohad V, et al. Targeting the gut to prevent sepsis from a cutaneous burn[J]. JCI insight, 2020, 5(19): e137128.
|
[3] |
Haak BW, Prescott HC, Wiersinga WJ. Therapeutic Potential of the Gut Microbiota in the Prevention and Treatment of Sepsis[J]. Front Immunol, 2018, 9: 2042.
|
[4] |
Krentz T, Allen S. Bacterial translocation in critical illness[J]. J Small Anim Pract, 2017, 58(4): 191-198.
|
[5] |
Corcione S, Lupia T, De Rosa FG, et al. Microbiome in the setting of burn patients: implications for infections and clinical outcomes[J]. Burns Trauma, 2020, 8: tkaa033.
|
[6] |
Kuethe JW, Armocida SM, Midura EF, et al. Fecal Microbiota Transplant Restores Mucosal Integrity in a Murine Model of Burn Injury[J]. Shock, 2016, 45(6): 647-652.
|
[7] |
Cannon AR, Akhtar S, Hammer AM, et al. Effects of Mesalamine Treatment on Gut Barrier Integrity After Burn Injury[J]. J Burn Care Res, 2016, 37(5): 283-292.
|
[8] |
罗红敏,胡森,卞徽宁,等. 丙戊酸钠对严重烫伤后肠屏障功能的保护作用及机制[J]. 中华危重病急救医学,2017, 29(3): 221-227.
|
[9] |
Luck ME, Herrnreiter CJ, Choudhry MA. Gut Microbial Changes and their Contribution to Post-Burn Pathology[J]. Shock, 2021, 56(3): 329-344.
|
[10] |
Deitch EA. Gut-origin sepsis: evolution of a concept[J]. Surgeon, 2012, 10(6): 350-356.
|
[11] |
Huang Y, Wang Y, Feng Y, et al. Role of Endoplasmic Reticulum Stress-Autophagy Axis in Severe Burn-Induced Intestinal Tight Junction Barrier Dysfunction in Mice[J]. Front Physiol, 2019, 10: 606.
|
[12] |
Fromm B, Billipp T, Peck LE, et al. A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome[J]. Annu Rev Genet, 2015, 49: 213-242.
|
[13] |
Ke JX, Bian X, Liu H, et al. Edaravone reduces oxidative stress and intestinal cell apoptosis after burn through up-regulating miR-320 expression[J]. Mol Med, 2019, 25(1): 54.
|
[14] |
Wang G, Yao J, Li Z, et al. miR-34a-5p Inhibition Alleviates Intestinal Ischemia/Reperfusion-Induced Reactive Oxygen Species Accumulation and Apoptosis via Activation of SIRT1 Signaling[J]. Antioxid Redox Signal, 2016, 24(17): 961-973.
|
[15] |
Liu Z, Jiang J, Yang Q, et al. MicroRNA-682-mediated downregulation of PTEN in intestinal epithelial cells ameliorates intestinal ischemia-reperfusion injury[J]. Cell Death Dis, 2016, 7(4): e2210.
|
[16] |
梁晶冰,王裴,冯燕海,等. 丁酸钠对严重烫伤小鼠肠道屏障的作用与相关机制[J]. 中华烧伤杂志,2020, 36(1): 48-53.
|
[17] |
陈宏泽. 正丁酸钠对严重烧伤延迟复苏大鼠肠损伤及氧化应激的影响[D]. 合肥:安徽医科大学,2019.
|
[18] |
Feng Y, Huang Y, Wang Y, et al. Severe burn injury alters intestinal microbiota composition and impairs intestinal barrier in mice[J]. Burns Trauma, 2019, 7: 20.
|
[19] |
Qin C, Jiang Y, Chen X, et al. Dexmedetomidine protects against burn-induced intestinal barrier injury via the MLCK/p-MLC signalling pathway[J]. Burns, 2021, 47(7): 1576-1585.
|
[20] |
He W, Wang Y, Wang P, et al. Intestinal barrier dysfunction in severe burn injury[J]. Burns Trauma, 2019, 7: 24.
|
[21] |
Song Y, Li Y, Xiao Y, et al. Neutralization of interleukin-17A alleviates burn-induced intestinal barrier disruption via reducing pro-inflammatory cytokines in a mouse model[J]. Burns Trauma, 2019, 7: 37.
|
[22] |
Niu L, Qiao W, Hu Z, et al. Berberine attenuates lipopolysaccharide-induced impairments of intestinal glutamine transport and glutaminase activity in rat[J]. Fitoterapia, 2011, 82(3): 323-330.
|
[23] |
Wang ZE, Wu D, Zheng LW, et al. Effects of glutamine on intestinal mucus barrier after burn injury[J]. Am J Transl Res, 2018, 10(11): 3833-3846.
|
[24] |
孙珂岱,董志伟,陈婧,等. 严重烧伤患者早期口服混合肠内营养剂对肠黏膜屏障的作用[J]. 中华烧伤杂志,2015, 31(1): 25-29.
|
[25] |
Liu S, Chen HZ, Xu ZD, et al. Sodium butyrate inhibits the production of HMGB1 and attenuates severe burn plus delayed resuscitation-induced intestine injury via the p38 signaling pathway[J]. Burns, 2019, 45(3): 649-658.
|
[26] |
Feng Y, Wang Y, Wang P, et al. Short-Chain Fatty Acids Manifest Stimulative and Protective Effects on Intestinal Barrier Function Through the Inhibition of NLRP3 Inflammasome and Autophagy[J]. Cell Physiol Biochem, 2018, 49(1): 190-205.
|
[27] |
刘馨竹,游波,张玉龙,等. 维生素D3对严重烧伤小鼠肠黏膜屏障的作用[J]. 中华烧伤杂志,2019, 35(4): 284-291.
|
[28] |
Huang G, Sun K, Yin S, et al. Burn Injury Leads to Increase in Relative Abundance of Opportunistic Pathogens in the Rat Gastrointestinal Microbiome[J]. Front Microbiol, 2017, 8: 1237.
|
[29] |
Tong LC, Wang Y, Wang ZB, et al. Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress[J]. Front Pharmacol, 2016, 7: 253.
|
[30] |
冯燕海,黄亚兰,王裴,等. 短链脂肪酸对内毒素/脂多糖引起的人肠上皮细胞屏障功能损害的作用及相关机制[J]. 中华烧伤杂志,2018, 34(4): 214-218.
|
[31] |
Yan H, Ajuwon KM. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway[J]. PLoS One, 2017, 12(6): e0179586.
|
[32] |
Qiao YL, Qian JM, Lu QY, et al. Protective effects of butyrate on intestinal ischemia-reperfusion injury in rats[J]. J Surg Res, 2015, 197(2): 324-330.
|
[33] |
郭宏伟,张妮妮,张伟,等. 抗生素诱导的菌群紊乱对幼鼠结肠黏膜屏障及免疫反应的影响[J]. 中华实用儿科临床杂志,2019, 34(7): 505-509.
|
[34] |
Huang Z, Huang Y, Chen J, et al. The role and therapeutic potential of gut microbiome in severe burn[J]. Front Cell Infect Microbiol, 2022, 12: 974259.
|
[35] |
Liu Z, Li N, Fang H, et al. Enteric dysbiosis is associated with sepsis in patients[J]. FASEB J, 2019, 33(11): 12299-12310.
|
[36] |
Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD[J]. Autophagy, 2020, 16(1): 38-51.
|
[37] |
Perdanakusuma DS, Hariani L, Nasser NF, et al. The effect of a single-strain probiotic administration in the treatment of thermal burns patients[J]. Iran J Microbiol, 2019, 11(3): 255-259.
|
[38] |
Li QR, Wang CY, Tang C, et al. Reciprocal interaction between intestinal microbiota and mucosal lymphocyte in cynomolgus monkeys after alemtuzumab treatment[J]. Am J Transplant, 2013, 13(4): 899-910.
|
[39] |
Durazzi F, Sala C, Castellani G, et al. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota[J]. Sci Rep, 2021, 11(1): 3030.
|