切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2023, Vol. 18 ›› Issue (01) : 65 -68. doi: 10.3877/cma.j.issn.1673-9450.2023.01.010

综述

严重烧伤后肠屏障功能障碍的研究进展
李大伟1, 申传安2,(), 刘兆兴1, 臧宇1, 张文1, 马景龙1   
  1. 1. 100853 北京,解放军医学院;100048 北京,解放军总医院第四医学中心烧伤整形医学部
    2. 100048 北京,解放军总医院第四医学中心烧伤整形医学部
  • 收稿日期:2022-10-01 出版日期:2023-02-01
  • 通信作者: 申传安
  • 基金资助:
    军队后勤科研重大项目(ALB18J001); 北京自然科学基金项目(7204311); 国家自然科学基金项目(82072169)

Research progress on intestinal barrier dysfunction after severe burn

Dawei Li1, Chuanan Shen2,(), Zhaoxing Liu1, Yu Zang1, Wen Zhang1, Jinglong Ma1   

  1. 1. PLA Medical School, Beijing 100853, China; Department of Burns and Plastic Surgery, Fourth Medical Centre of PLA General Hospital, Beijing 100048, China
    2. Department of Burns and Plastic Surgery, Fourth Medical Centre of PLA General Hospital, Beijing 100048, China
  • Received:2022-10-01 Published:2023-02-01
  • Corresponding author: Chuanan Shen
引用本文:

李大伟, 申传安, 刘兆兴, 臧宇, 张文, 马景龙. 严重烧伤后肠屏障功能障碍的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 65-68.

Dawei Li, Chuanan Shen, Zhaoxing Liu, Yu Zang, Wen Zhang, Jinglong Ma. Research progress on intestinal barrier dysfunction after severe burn[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(01): 65-68.

肠屏障由肠道上皮屏障、微生物屏障和黏膜免疫屏障组成。严重烧伤后低灌注性缺血缺氧、炎症因子、机体营养不良和菌群失调等多种因素均可导致肠屏障功能障碍,是引起细菌移位和肠源性感染,诱发脓毒症和多脏器功能衰竭的重要原因,严重影响患者预后。近年来,国内外对严重烧伤后肠道屏障功能损伤的机制和危害取得了较多的研究进展,本文对此进行综述。

The intestinal barrier consists of intestinal epithelial barrier, intestinal microbial barrier and mucosal immune barrier. Many factors such as low perfusion ischemia and hypoxia, inflammatory cytokines, malnutrition and flora imbalance after severe burn can lead to intestinal barrier dysfunction, which is responsible for bacterial translocation and intestinal infection and vulnerable to sepsis and multiple organ failure, and seriously affects the prognosis of patients. In recent years, more research progress has been made on the mechanism and harm of intestinal barrier function injury after severe burn, which is reviewed in this paper.

[1]
González Olmo BM, Butler MJ, Barrientos RM. Evolution of the Human Diet and Its Impact on Gut Microbiota, Immune Responses, and Brain Health[J]. Nutrients, 2021, 13(1): 196.
[2]
Adiliaghdam F, Cavallaro P, Mohad V, et al. Targeting the gut to prevent sepsis from a cutaneous burn[J]. JCI insight, 2020, 5(19): e137128.
[3]
Haak BW, Prescott HC, Wiersinga WJ. Therapeutic Potential of the Gut Microbiota in the Prevention and Treatment of Sepsis[J]. Front Immunol, 2018, 9: 2042.
[4]
Krentz T, Allen S. Bacterial translocation in critical illness[J]. J Small Anim Pract, 2017, 58(4): 191-198.
[5]
Corcione S, Lupia T, De Rosa FG, et al. Microbiome in the setting of burn patients: implications for infections and clinical outcomes[J]. Burns Trauma, 2020, 8: tkaa033.
[6]
Kuethe JW, Armocida SM, Midura EF, et al. Fecal Microbiota Transplant Restores Mucosal Integrity in a Murine Model of Burn Injury[J]. Shock, 2016, 45(6): 647-652.
[7]
Cannon AR, Akhtar S, Hammer AM, et al. Effects of Mesalamine Treatment on Gut Barrier Integrity After Burn Injury[J]. J Burn Care Res, 2016, 37(5): 283-292.
[8]
罗红敏,胡森,卞徽宁,等. 丙戊酸钠对严重烫伤后肠屏障功能的保护作用及机制[J]. 中华危重病急救医学2017, 29(3): 221-227.
[9]
Luck ME, Herrnreiter CJ, Choudhry MA. Gut Microbial Changes and their Contribution to Post-Burn Pathology[J]. Shock, 2021, 56(3): 329-344.
[10]
Deitch EA. Gut-origin sepsis: evolution of a concept[J]. Surgeon, 2012, 10(6): 350-356.
[11]
Huang Y, Wang Y, Feng Y, et al. Role of Endoplasmic Reticulum Stress-Autophagy Axis in Severe Burn-Induced Intestinal Tight Junction Barrier Dysfunction in Mice[J]. Front Physiol, 2019, 10: 606.
[12]
Fromm B, Billipp T, Peck LE, et al. A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome[J]. Annu Rev Genet, 2015, 49: 213-242.
[13]
Ke JX, Bian X, Liu H, et al. Edaravone reduces oxidative stress and intestinal cell apoptosis after burn through up-regulating miR-320 expression[J]. Mol Med, 2019, 25(1): 54.
[14]
Wang G, Yao J, Li Z, et al. miR-34a-5p Inhibition Alleviates Intestinal Ischemia/Reperfusion-Induced Reactive Oxygen Species Accumulation and Apoptosis via Activation of SIRT1 Signaling[J]. Antioxid Redox Signal, 2016, 24(17): 961-973.
[15]
Liu Z, Jiang J, Yang Q, et al. MicroRNA-682-mediated downregulation of PTEN in intestinal epithelial cells ameliorates intestinal ischemia-reperfusion injury[J]. Cell Death Dis, 2016, 7(4): e2210.
[16]
梁晶冰,王裴,冯燕海,等. 丁酸钠对严重烫伤小鼠肠道屏障的作用与相关机制[J]. 中华烧伤杂志2020, 36(1): 48-53.
[17]
陈宏泽. 正丁酸钠对严重烧伤延迟复苏大鼠肠损伤及氧化应激的影响[D]. 合肥:安徽医科大学,2019.
[18]
Feng Y, Huang Y, Wang Y, et al. Severe burn injury alters intestinal microbiota composition and impairs intestinal barrier in mice[J]. Burns Trauma, 2019, 7: 20.
[19]
Qin C, Jiang Y, Chen X, et al. Dexmedetomidine protects against burn-induced intestinal barrier injury via the MLCK/p-MLC signalling pathway[J]. Burns, 2021, 47(7): 1576-1585.
[20]
He W, Wang Y, Wang P, et al. Intestinal barrier dysfunction in severe burn injury[J]. Burns Trauma, 2019, 7: 24.
[21]
Song Y, Li Y, Xiao Y, et al. Neutralization of interleukin-17A alleviates burn-induced intestinal barrier disruption via reducing pro-inflammatory cytokines in a mouse model[J]. Burns Trauma, 2019, 7: 37.
[22]
Niu L, Qiao W, Hu Z, et al. Berberine attenuates lipopolysaccharide-induced impairments of intestinal glutamine transport and glutaminase activity in rat[J]. Fitoterapia, 2011, 82(3): 323-330.
[23]
Wang ZE, Wu D, Zheng LW, et al. Effects of glutamine on intestinal mucus barrier after burn injury[J]. Am J Transl Res, 2018, 10(11): 3833-3846.
[24]
孙珂岱,董志伟,陈婧,等. 严重烧伤患者早期口服混合肠内营养剂对肠黏膜屏障的作用[J]. 中华烧伤杂志2015, 31(1): 25-29.
[25]
Liu S, Chen HZ, Xu ZD, et al. Sodium butyrate inhibits the production of HMGB1 and attenuates severe burn plus delayed resuscitation-induced intestine injury via the p38 signaling pathway[J]. Burns, 2019, 45(3): 649-658.
[26]
Feng Y, Wang Y, Wang P, et al. Short-Chain Fatty Acids Manifest Stimulative and Protective Effects on Intestinal Barrier Function Through the Inhibition of NLRP3 Inflammasome and Autophagy[J]. Cell Physiol Biochem, 2018, 49(1): 190-205.
[27]
刘馨竹,游波,张玉龙,等. 维生素D3对严重烧伤小鼠肠黏膜屏障的作用[J]. 中华烧伤杂志2019, 35(4): 284-291.
[28]
Huang G, Sun K, Yin S, et al. Burn Injury Leads to Increase in Relative Abundance of Opportunistic Pathogens in the Rat Gastrointestinal Microbiome[J]. Front Microbiol, 2017, 8: 1237.
[29]
Tong LC, Wang Y, Wang ZB, et al. Propionate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Improving Intestinal Barrier Function and Reducing Inflammation and Oxidative Stress[J]. Front Pharmacol, 2016, 7: 253.
[30]
冯燕海,黄亚兰,王裴,等. 短链脂肪酸对内毒素/脂多糖引起的人肠上皮细胞屏障功能损害的作用及相关机制[J]. 中华烧伤杂志2018, 34(4): 214-218.
[31]
Yan H, Ajuwon KM. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway[J]. PLoS One, 2017, 12(6): e0179586.
[32]
Qiao YL, Qian JM, Lu QY, et al. Protective effects of butyrate on intestinal ischemia-reperfusion injury in rats[J]. J Surg Res, 2015, 197(2): 324-330.
[33]
郭宏伟,张妮妮,张伟,等. 抗生素诱导的菌群紊乱对幼鼠结肠黏膜屏障及免疫反应的影响[J]. 中华实用儿科临床杂志2019, 34(7): 505-509.
[34]
Huang Z, Huang Y, Chen J, et al. The role and therapeutic potential of gut microbiome in severe burn[J]. Front Cell Infect Microbiol, 2022, 12: 974259.
[35]
Liu Z, Li N, Fang H, et al. Enteric dysbiosis is associated with sepsis in patients[J]. FASEB J, 2019, 33(11): 12299-12310.
[36]
Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD[J]. Autophagy, 2020, 16(1): 38-51.
[37]
Perdanakusuma DS, Hariani L, Nasser NF, et al. The effect of a single-strain probiotic administration in the treatment of thermal burns patients[J]. Iran J Microbiol, 2019, 11(3): 255-259.
[38]
Li QR, Wang CY, Tang C, et al. Reciprocal interaction between intestinal microbiota and mucosal lymphocyte in cynomolgus monkeys after alemtuzumab treatment[J]. Am J Transplant, 2013, 13(4): 899-910.
[39]
Durazzi F, Sala C, Castellani G, et al. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota[J]. Sci Rep, 2021, 11(1): 3030.
[1] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[2] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[3] 王成, 张慧君, 覃凤均, 陈辉. 网状植皮与ReCell表皮细胞种植在深Ⅱ度烧伤治疗中的疗效对比[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 498-502.
[4] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[5] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[6] 甄子铂, 刘金虎. 基于列线图模型探究静脉全身麻醉腹腔镜胆囊切除术患者术后肠道功能紊乱的影响因素[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 61-65.
[7] 汤鹏昊, 张武. 肠道微生态与肝移植围手术期并发症相关研究进展[J]. 中华移植杂志(电子版), 2023, 17(05): 303-307.
[8] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[9] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[10] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[11] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[12] 杨程鹏, 金佳, 王明祥, 戴光耀. 直肠黏膜环切联合阴道后壁折叠治疗出口梗阻型便秘的效果观察[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 471-474.
[13] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[14] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
[15] 方辉, 李菲, 张帆, 魏强, 陈强谱. 外源性瘦素对梗阻性黄疸大鼠肠黏膜增殖的影响[J]. 中华临床医师杂志(电子版), 2023, 17(05): 575-580.
阅读次数
全文


摘要