切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2023, Vol. 18 ›› Issue (02) : 174 -179. doi: 10.3877/cma.j.issn.1673-9450.2023.02.014

综述

生长因子和细胞因子在创面修复过程中作用的研究进展
李芳1, 李全1, 曹胜军1, 王凌峰1,()   
  1. 1. 014010 包头,内蒙古包钢医院烧伤科,内蒙古烧伤医学研究所
  • 收稿日期:2023-01-25 出版日期:2023-04-01
  • 通信作者: 王凌峰
  • 基金资助:
    国家自然科学基金地区科学基金项目(82060348); 内蒙古自治区科技计划(2020GG0214); 内蒙古自治区自然科学基金(2021MS08066); 内蒙医科大学联合项目(YKD2021LH055)

Research advances on growth factors and cytokines in wound repair

Fang Li1, Quan Li1, Shengjun Cao1, Lingfeng Wang1,()   

  1. 1. Department of Burns, Baogang Hospital of Inner Mongolia, Inner Mongolia Institute of Burn Research, Baotou 014010, China
  • Received:2023-01-25 Published:2023-04-01
  • Corresponding author: Lingfeng Wang
引用本文:

李芳, 李全, 曹胜军, 王凌峰. 生长因子和细胞因子在创面修复过程中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(02): 174-179.

Fang Li, Quan Li, Shengjun Cao, Lingfeng Wang. Research advances on growth factors and cytokines in wound repair[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(02): 174-179.

创面修复是个复杂的,由多种细胞参与,通过细胞的迁移、增殖、分化,实现组织和上皮再生的过程。这些复杂的生理生化反应都受到细胞信号转导调控,参与创面修复的细胞会分泌生长因子或细胞因子,这些因子再参与到调控创面愈合的信号通路中,促进创面愈合。生长因子应用于创面治疗仍是热点研究,本文就生长因子和细胞因子在创面修复过程中的研究综述。

Wound repair is a complex process involving a variety of cells, which achieve tissue and epithelial regeneration via cell migration, proliferation and differentiation. These complex physiological and biochemical reactions are regulated by cell signal transduction. Cells involved in wound repair will secrete some growth factors or cytokines, and these factors will participate in the signal pathway regulating wound healing to promote wound healing. The application of growth factors in wound treatment is still a hot topic. This article reviews the research of growth factors and cytokines in the process of wound repair.

[1]
Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation[J]. Sci Transl Med, 2014, 6(265): 265sr6.
[2]
Julie K, Nguyen, et al. The IL-4/IL-13 axis in skin fibrosis and scarring: mechanistic concepts and therapeutic targets[J]. Arch Dermatol Res, 2020, 312(2): 81-92.
[3]
Salmon-Ehr V, Ramont L, Godeau G, et al. Implication of interleukin-4 in wound healing[J]. Lab Invest, 2000, 80(8):1337-1343.
[4]
Xiao S, Huang G, Wei Z, et al. IL-10 gene-modified human amniotic mesenchymal stem cells augment regenerative wound healing by multiple synergistic effects[J]. Stem Cells Int, 2019, 2019: 9158016.
[5]
Wang Y, Bai Y, Li Y, et al. IL-15 enhances activation and IGF-1 production of dendritic epidermal T cells to promote wound healing in diabetic mice[J]. Front Immunol, 2017, 24(8): 1557.
[6]
Lee J, Rodero MP, Patel J, et al. Interleukin-23 regulates interleukin-17 expression in wounds, and its inhibition accelerates diabetic wound healing through the alteration of macrophage polarization[J]. FASEB J, 2018, 32(4): 2086-2094.
[7]
Groves RW, Schmidt-Lucke JA. Recombinant human GM-CSF in the treatment of poorly healing wounds[J]. Adv Skin Wound Care, 2000, 13(3): 107-112.
[8]
Rho CR, Park MY, Kang S. Effects of granulocyte-macrophage colony-stimulating (GM-CSF) factor on corneal epithelial cells in corneal wound healing model[J]. PLoS One, 2015, 10(9): e0138020.
[9]
Mann A, Breuhahn K, Schirmacher P, et al. Keratinocyte-derived granulocyte-macrophage colony stimulating factor accelerates wound healing: stimulation of keratinocyte proliferation, granulation tissue formation, and vascularization[J]. J Invest Dermatol, 2001, 117(6): 1382-1390.
[10]
Mann A, Niekisch K, Schirmacher P, et al. Granulocyte-macrophage colony-stimulating factor is essential for normal wound healing[J]. J Investig Dermatol Symp Proc, 2006, 11(1): 87-92.
[11]
Fang Y, Gong SJ, Xu YH, et al. Impaired cutaneous wound healing in granulocyte/macrophage colony-stimulating factor knockout mice[J]. Br J Dermatol, 2007, 157(3): 458-465.
[12]
Fang Y, Shen J, Yao M, et al. Granulocyte-macrophage colony-stimulating factor enhances wound healing in diabetes via upregulation of proinflammatory cytokines[J]. Br J Dermatol, 2010, 162(3): 478-486.
[13]
Castro-Dopico T, Fleming A, Dennison TW, et al. GM-CSF calibrates macrophage defense and wound healing programs during intestinal infection and inflammation[J]. Cell Rep, 2020, 32(1): 107857.
[14]
Hu X, Sun H, Han C, et al. Topically applied rhGM-CSF for the wound healing: a systematic review[J]. Burns, 2011, 37(5): 729-741.
[15]
Barrientos S, Brem H, Stojadinovic O, et al. Clinical application of growth factors and cytokines in wound healing[J]. Wound Repair Regen, 2014, 22(5): 569-578.
[16]
Galiano RD, Tepper OM, Pelo CR, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells[J]. Am J Pathol, 2004, 164(6): 1935-1947.
[17]
Gopalakrishnan A, Ram M, Kumawat S, et al. Quercetin accelerated cutaneous wound healing in rats by increasing levels of VEGF and TGF-β1[J]. Indian J Exp Biol, 2016, 54(3): 187-195.
[18]
Zhou J, Ni M, Liu X, et al. Curcumol promotes vascular endothelial growth factor (VEGF)-mediated diabetic wound healing in streptozotocin-induced hyperglycemic rats[J]. Med Sci Monit, 2017, 23: 555-562.
[19]
Liu C, Hao Y, Huang J, et al. Ghrelin accelerates wound healing in combined radiation and wound injury in mice[J]. Exp Dermatol, 2017, 26(2): 186-193.
[20]
Boyar V. Association of systemic or intravitreal antivascular endothelial growth factor (Anti-VEGF) and impaired wound healing in pediatric patients: collagen to the rescue[J]. J Wound Ostomy Continence Nurs, 2021, 48(3): 256-261.
[21]
Nagy JA, Vasile E, Feng D, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis[J]. J Exp Med, 2002, 196(11): 1497-1506.
[22]
Hirakawa S, Kodama S, Kunstfeld R, et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis[J]. J Exp Med, 2005, 201(7): 1089-1099.
[23]
Koike Y, Yozaki M, Utani A, et al. Fibroblast growth factor 2 accelerates the epithelial-mesenchymal transition in keratinocytes during wound healing process[J]. Sci Rep, 2020, 10(1): 18545.
[24]
Kinoda J, Ishihara M, Nakamura S, et al. Protective effect of FGF-2 and low-molecular-weight heparin/protamine nanoparticles on radiation-induced healing-impaired wound repair in rats[J]. J Radiat Res, 2018, 59(1): 27-34.
[25]
Andres C, Hasenauer J, Ahn HS, et al. Wound-healing growth factor, basic FGF, induces Erk1/2-dependent mechanical hyperalgesia[J]. Pain, 2013, 154(10): 2216-2226.
[26]
Wu J, Zhu J, He C, et al. Comparative study of heparin-poloxamer hydrogel modified bFGF and aFGF for in vivo wound healing efficiency[J]. ACS Appl Mater Interfaces, 2016, 8(29): 18710-18721.
[27]
Peng Y, Wu S, Tang Q, et al. KGF-1 accelerates wound contraction through the TGF-beta1/Smad signaling pathway in a double-paracrine manner[J]. J Biol Chem, 2019, 294(21): 8361-8370.
[28]
Xiaojie W, Banda J, Qi H, et al. Scarless wound healing: current insights from the perspectives of TGF-β,KGF-1, and KGF-2[J]. Cytokine Growth Factor Rev, 2022, 66: 26-37.
[29]
Watson J, Francavilla C. Regulation of FGF10 signaling in development and disease[J]. Front Genet, 2018, 9: 500.
[30]
Xu K, Chai B, Zhang K, et al. Topical application of fibroblast growth factor 10-PLGA microsphere accelerates wound healing via inhibition of ER stress[J]. Oxid Med Cell Longev, 2020, 2020: 8586314.
[31]
Oh JS, Lee EJ. Engineered dressing of hybrid chitosan-silica for effective delivery of keratin growth factor and acceleration of wound healing[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109815.
[32]
Bienert M, Hoss M, Bartneck M, et al. Growth factor-functionalized silk membranes support wound healing in vitro[J]. Biomed Mater, 2017, 12(4): 045023.
[33]
Pan H, Shi C, Yang R, et al. Controlled release of KGF-2 for regulation of wound healing by KGF-2 complexed with "lotus seedpod surface-like" porous microspheres[J]. J Mater Chem B, 2021, 9(19): 4039-4049.
[34]
Kaltalioglu K, Coskun-Cevher S. A bioactive molecule in a complex wound healing process: platelet-derived growth factor[J]. Int J Dermatol, 2015, 54(8): 972-977.
[35]
Wu LW, Chen WL, Huang SM, et al. Platelet-derived growth factor-AA is a substantial factor in the ability of adipose-derived stem cells and endothelial progenitor cells to enhance wound healing [J]. FASEB J, 2019, 33(2): 2388-2395.
[36]
Shi R, Lian W, Han S, et al. Nanosphere-mediated co-delivery of VEGF-A and PDGF-B genes for accelerating diabetic foot ulcers healing in rats[J]. Gene Ther, 2018, 25(6): 425-438.
[37]
Di Santo MC, Alaimo A, Acebedo SL, et al. Biological responses induced by high molecular weight chitosan administrated jointly with platelet-derived growth factors in different mammalian cell lines [J]. Int J Biol Macromol, 2020, 158: 953-967.
[38]
Mulder G, Tallis AJ, Marshall VT, et al. Treatment of nonhealing diabetic foot ulcers with a platelet-derived growth factor gene-activated matrix (GAM501): results of a phase 1/2 trial[J]. Wound Repair Regen, 2009, 17(6): 772-779.
[39]
Barrientos S, Stojadinovic O, Golinko MS, et al. Growth factors and cytokines in wound healing[J]. Wound Repair Regen, 2008, 16(5): 585-601.
[40]
Choi SM, Lee KM, Kim HJ, et al. Effects of structurally stabilized EGF and bFGF on wound healing in type I and type II diabetic mice[J]. Acta Biomater, 2018, 66: 325-334.
[41]
Yoon D, Yoon D, Cha HJ, et al. Enhancement of wound healing efficiency mediated by artificial dermis functionalized with EGF or NRG1[J]. Biomed Mater, 2018, 13(4): 045007.
[42]
Qiang W, Zhou T, Lan X, et al. A new nanoscale transdermal drug delivery system: oil body-linked oleosin-hEGF improves skin regeneration to accelerate wound healing[J]. J Nanobiotechnology, 2018, 16(1): 62.
[43]
Dao DT, Anez-Bustillos L, Adam RM, et al. Heparin-binding epidermal growth factor-like growth factor as a critical mediator of tissue repair and regeneration[J]. Am J Pathol, 2018, 188(11): 2446-2456.
[44]
Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-β family in wound healing, burns and scarring: a review[J]. Int J Burns Trauma, 2012, 2(1): 18-28.
[45]
Le M, Naridze R, Morrison J, et al. Transforming growth factor Beta 3 is required for excisional wound repair in vivo[J]. PLoS One, 2012, 7(10): e48040.
[46]
Occleston NL, OKane S, Laverty HG, et al. Discovery and development of avotermin (recombinant human transforming growth factor beta 3): a new class of prophylactic therapeutic for the improvement of scarring[J]. Wound Repair Regen, 2011, 19(1): s38-s48.
[47]
Sato M, Muragaki Y, Saika S, et al. Targeted disruption of TGFβ1/Smad3 signalling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction[J]. J Clin Invest, 2003, 112(10):1486-1494.
[48]
Zubair M, Ahmad J. Role of growth factors and cytokines in diabetic foot ulcer healing: a detailed review[J]. Rev Endocr Metab Disord, 2019, 20(2):207-217.
[49]
Martino MM, Briquez PS, Guc E, et al. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing[J]. Science, 2014, 343(6173): 885-888.
[50]
White MJV, Briquez PS, White DAV, et al. VEGF-A, PDGF-BB and HB-EGF engineered for promiscuous super affinity to the extracellular matrix improve wound healing in a model of type 1 diabetes[J]. NPJ Regen Med, 2021, 6(1): 76.
[51]
韩春茂,程飚.皮肤创面外用生长因子的临床指南[J].中华烧伤杂志2017, 33(12): 721-727.
[1] 刘晨鹭, 刘洁, 张帆, 严彩英, 陈倩, 陈双庆. 增强MRI 影像组学特征生境分析在预测乳腺癌HER-2 表达状态中的应用[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 339-345.
[2] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[3] 王强, 金光哲, 巨积辉, 王凯, 唐晓强, 吕文涛, 程贺云, 杨林, 王海龙. 超声辅助定位下游离臂内侧皮瓣在修复手指创面中的临床应用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 393-397.
[4] 孙勇, 彭曦. 重视烧伤创面愈合中的葡萄糖代谢以优化营养治疗策略[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 277-281.
[5] 狄海萍, 郑军杰, 刘磊, 郭海娜, 邢培朋, 曹大勇, 马超, 黄万新, 张博, 夏成德, 周超. 人工真皮联合富血小板纤维蛋白修复小面积深度创面的临床疗效[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 288-293.
[6] 崔子豪, 阳跃, 赵景峰, 冯光, 庹晓晔. Fournier坏疽创面感染控制策略及创面修复的临床分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 319-323.
[7] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[8] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[9] 朱佳琳, 方向, 贵诗雨, 黄丹, 周小雨, 郭文恺. 大鼠切口疝腹膜前间隙补片修补术后血清中VEGF 和Ang-1 的表达情况[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 703-707.
[10] 张敏龙, 杨翠平, 王博, 崔云杰, 金发光. MiR-200b-3p 通过抑制HIF-1α 表达减轻海水吸入诱导的肺水肿作用及机制[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 696-700.
[11] 赖淼, 景鑫, 李桂珍, 李怡. 非小细胞肺癌EGFR 突变亚型的临床病理和预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 731-737.
[12] 张燕, 杨跃青, 邱峥. IgG 联合血清细胞因子对肺结核并发慢性肺曲霉菌病的诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 809-812.
[13] 刘先勇, 秦东梅, 张若梅, 李俊娇, 孟春芹, 邬明歆, 王玉红, 赵新鲜, 徐瑞联, 洪文文, 马玲, 仇玮, 周宇. Her2/Hes1在肠型胃癌Correa级联反应3个病理阶段中的表达及意义[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 321-327.
[14] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[15] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?