切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2023, Vol. 18 ›› Issue (02) : 174 -179. doi: 10.3877/cma.j.issn.1673-9450.2023.02.014

综述

生长因子和细胞因子在创面修复过程中作用的研究进展
李芳1, 李全1, 曹胜军1, 王凌峰1,()   
  1. 1. 014010 包头,内蒙古包钢医院烧伤科,内蒙古烧伤医学研究所
  • 收稿日期:2023-01-25 出版日期:2023-04-01
  • 通信作者: 王凌峰
  • 基金资助:
    国家自然科学基金地区科学基金项目(82060348); 内蒙古自治区科技计划(2020GG0214); 内蒙古自治区自然科学基金(2021MS08066); 内蒙医科大学联合项目(YKD2021LH055)

Research advances on growth factors and cytokines in wound repair

Fang Li1, Quan Li1, Shengjun Cao1, Lingfeng Wang1,()   

  1. 1. Department of Burns, Baogang Hospital of Inner Mongolia, Inner Mongolia Institute of Burn Research, Baotou 014010, China
  • Received:2023-01-25 Published:2023-04-01
  • Corresponding author: Lingfeng Wang
引用本文:

李芳, 李全, 曹胜军, 王凌峰. 生长因子和细胞因子在创面修复过程中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 174-179.

Fang Li, Quan Li, Shengjun Cao, Lingfeng Wang. Research advances on growth factors and cytokines in wound repair[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(02): 174-179.

创面修复是个复杂的,由多种细胞参与,通过细胞的迁移、增殖、分化,实现组织和上皮再生的过程。这些复杂的生理生化反应都受到细胞信号转导调控,参与创面修复的细胞会分泌生长因子或细胞因子,这些因子再参与到调控创面愈合的信号通路中,促进创面愈合。生长因子应用于创面治疗仍是热点研究,本文就生长因子和细胞因子在创面修复过程中的研究综述。

Wound repair is a complex process involving a variety of cells, which achieve tissue and epithelial regeneration via cell migration, proliferation and differentiation. These complex physiological and biochemical reactions are regulated by cell signal transduction. Cells involved in wound repair will secrete some growth factors or cytokines, and these factors will participate in the signal pathway regulating wound healing to promote wound healing. The application of growth factors in wound treatment is still a hot topic. This article reviews the research of growth factors and cytokines in the process of wound repair.

[1]
Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation[J]. Sci Transl Med, 2014, 6(265): 265sr6.
[2]
Julie K, Nguyen, et al. The IL-4/IL-13 axis in skin fibrosis and scarring: mechanistic concepts and therapeutic targets[J]. Arch Dermatol Res, 2020, 312(2): 81-92.
[3]
Salmon-Ehr V, Ramont L, Godeau G, et al. Implication of interleukin-4 in wound healing[J]. Lab Invest, 2000, 80(8):1337-1343.
[4]
Xiao S, Huang G, Wei Z, et al. IL-10 gene-modified human amniotic mesenchymal stem cells augment regenerative wound healing by multiple synergistic effects[J]. Stem Cells Int, 2019, 2019: 9158016.
[5]
Wang Y, Bai Y, Li Y, et al. IL-15 enhances activation and IGF-1 production of dendritic epidermal T cells to promote wound healing in diabetic mice[J]. Front Immunol, 2017, 24(8): 1557.
[6]
Lee J, Rodero MP, Patel J, et al. Interleukin-23 regulates interleukin-17 expression in wounds, and its inhibition accelerates diabetic wound healing through the alteration of macrophage polarization[J]. FASEB J, 2018, 32(4): 2086-2094.
[7]
Groves RW, Schmidt-Lucke JA. Recombinant human GM-CSF in the treatment of poorly healing wounds[J]. Adv Skin Wound Care, 2000, 13(3): 107-112.
[8]
Rho CR, Park MY, Kang S. Effects of granulocyte-macrophage colony-stimulating (GM-CSF) factor on corneal epithelial cells in corneal wound healing model[J]. PLoS One, 2015, 10(9): e0138020.
[9]
Mann A, Breuhahn K, Schirmacher P, et al. Keratinocyte-derived granulocyte-macrophage colony stimulating factor accelerates wound healing: stimulation of keratinocyte proliferation, granulation tissue formation, and vascularization[J]. J Invest Dermatol, 2001, 117(6): 1382-1390.
[10]
Mann A, Niekisch K, Schirmacher P, et al. Granulocyte-macrophage colony-stimulating factor is essential for normal wound healing[J]. J Investig Dermatol Symp Proc, 2006, 11(1): 87-92.
[11]
Fang Y, Gong SJ, Xu YH, et al. Impaired cutaneous wound healing in granulocyte/macrophage colony-stimulating factor knockout mice[J]. Br J Dermatol, 2007, 157(3): 458-465.
[12]
Fang Y, Shen J, Yao M, et al. Granulocyte-macrophage colony-stimulating factor enhances wound healing in diabetes via upregulation of proinflammatory cytokines[J]. Br J Dermatol, 2010, 162(3): 478-486.
[13]
Castro-Dopico T, Fleming A, Dennison TW, et al. GM-CSF calibrates macrophage defense and wound healing programs during intestinal infection and inflammation[J]. Cell Rep, 2020, 32(1): 107857.
[14]
Hu X, Sun H, Han C, et al. Topically applied rhGM-CSF for the wound healing: a systematic review[J]. Burns, 2011, 37(5): 729-741.
[15]
Barrientos S, Brem H, Stojadinovic O, et al. Clinical application of growth factors and cytokines in wound healing[J]. Wound Repair Regen, 2014, 22(5): 569-578.
[16]
Galiano RD, Tepper OM, Pelo CR, et al. Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells[J]. Am J Pathol, 2004, 164(6): 1935-1947.
[17]
Gopalakrishnan A, Ram M, Kumawat S, et al. Quercetin accelerated cutaneous wound healing in rats by increasing levels of VEGF and TGF-β1[J]. Indian J Exp Biol, 2016, 54(3): 187-195.
[18]
Zhou J, Ni M, Liu X, et al. Curcumol promotes vascular endothelial growth factor (VEGF)-mediated diabetic wound healing in streptozotocin-induced hyperglycemic rats[J]. Med Sci Monit, 2017, 23: 555-562.
[19]
Liu C, Hao Y, Huang J, et al. Ghrelin accelerates wound healing in combined radiation and wound injury in mice[J]. Exp Dermatol, 2017, 26(2): 186-193.
[20]
Boyar V. Association of systemic or intravitreal antivascular endothelial growth factor (Anti-VEGF) and impaired wound healing in pediatric patients: collagen to the rescue[J]. J Wound Ostomy Continence Nurs, 2021, 48(3): 256-261.
[21]
Nagy JA, Vasile E, Feng D, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis[J]. J Exp Med, 2002, 196(11): 1497-1506.
[22]
Hirakawa S, Kodama S, Kunstfeld R, et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis[J]. J Exp Med, 2005, 201(7): 1089-1099.
[23]
Koike Y, Yozaki M, Utani A, et al. Fibroblast growth factor 2 accelerates the epithelial-mesenchymal transition in keratinocytes during wound healing process[J]. Sci Rep, 2020, 10(1): 18545.
[24]
Kinoda J, Ishihara M, Nakamura S, et al. Protective effect of FGF-2 and low-molecular-weight heparin/protamine nanoparticles on radiation-induced healing-impaired wound repair in rats[J]. J Radiat Res, 2018, 59(1): 27-34.
[25]
Andres C, Hasenauer J, Ahn HS, et al. Wound-healing growth factor, basic FGF, induces Erk1/2-dependent mechanical hyperalgesia[J]. Pain, 2013, 154(10): 2216-2226.
[26]
Wu J, Zhu J, He C, et al. Comparative study of heparin-poloxamer hydrogel modified bFGF and aFGF for in vivo wound healing efficiency[J]. ACS Appl Mater Interfaces, 2016, 8(29): 18710-18721.
[27]
Peng Y, Wu S, Tang Q, et al. KGF-1 accelerates wound contraction through the TGF-beta1/Smad signaling pathway in a double-paracrine manner[J]. J Biol Chem, 2019, 294(21): 8361-8370.
[28]
Xiaojie W, Banda J, Qi H, et al. Scarless wound healing: current insights from the perspectives of TGF-β,KGF-1, and KGF-2[J]. Cytokine Growth Factor Rev, 2022, 66: 26-37.
[29]
Watson J, Francavilla C. Regulation of FGF10 signaling in development and disease[J]. Front Genet, 2018, 9: 500.
[30]
Xu K, Chai B, Zhang K, et al. Topical application of fibroblast growth factor 10-PLGA microsphere accelerates wound healing via inhibition of ER stress[J]. Oxid Med Cell Longev, 2020, 2020: 8586314.
[31]
Oh JS, Lee EJ. Engineered dressing of hybrid chitosan-silica for effective delivery of keratin growth factor and acceleration of wound healing[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109815.
[32]
Bienert M, Hoss M, Bartneck M, et al. Growth factor-functionalized silk membranes support wound healing in vitro[J]. Biomed Mater, 2017, 12(4): 045023.
[33]
Pan H, Shi C, Yang R, et al. Controlled release of KGF-2 for regulation of wound healing by KGF-2 complexed with "lotus seedpod surface-like" porous microspheres[J]. J Mater Chem B, 2021, 9(19): 4039-4049.
[34]
Kaltalioglu K, Coskun-Cevher S. A bioactive molecule in a complex wound healing process: platelet-derived growth factor[J]. Int J Dermatol, 2015, 54(8): 972-977.
[35]
Wu LW, Chen WL, Huang SM, et al. Platelet-derived growth factor-AA is a substantial factor in the ability of adipose-derived stem cells and endothelial progenitor cells to enhance wound healing [J]. FASEB J, 2019, 33(2): 2388-2395.
[36]
Shi R, Lian W, Han S, et al. Nanosphere-mediated co-delivery of VEGF-A and PDGF-B genes for accelerating diabetic foot ulcers healing in rats[J]. Gene Ther, 2018, 25(6): 425-438.
[37]
Di Santo MC, Alaimo A, Acebedo SL, et al. Biological responses induced by high molecular weight chitosan administrated jointly with platelet-derived growth factors in different mammalian cell lines [J]. Int J Biol Macromol, 2020, 158: 953-967.
[38]
Mulder G, Tallis AJ, Marshall VT, et al. Treatment of nonhealing diabetic foot ulcers with a platelet-derived growth factor gene-activated matrix (GAM501): results of a phase 1/2 trial[J]. Wound Repair Regen, 2009, 17(6): 772-779.
[39]
Barrientos S, Stojadinovic O, Golinko MS, et al. Growth factors and cytokines in wound healing[J]. Wound Repair Regen, 2008, 16(5): 585-601.
[40]
Choi SM, Lee KM, Kim HJ, et al. Effects of structurally stabilized EGF and bFGF on wound healing in type I and type II diabetic mice[J]. Acta Biomater, 2018, 66: 325-334.
[41]
Yoon D, Yoon D, Cha HJ, et al. Enhancement of wound healing efficiency mediated by artificial dermis functionalized with EGF or NRG1[J]. Biomed Mater, 2018, 13(4): 045007.
[42]
Qiang W, Zhou T, Lan X, et al. A new nanoscale transdermal drug delivery system: oil body-linked oleosin-hEGF improves skin regeneration to accelerate wound healing[J]. J Nanobiotechnology, 2018, 16(1): 62.
[43]
Dao DT, Anez-Bustillos L, Adam RM, et al. Heparin-binding epidermal growth factor-like growth factor as a critical mediator of tissue repair and regeneration[J]. Am J Pathol, 2018, 188(11): 2446-2456.
[44]
Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-β family in wound healing, burns and scarring: a review[J]. Int J Burns Trauma, 2012, 2(1): 18-28.
[45]
Le M, Naridze R, Morrison J, et al. Transforming growth factor Beta 3 is required for excisional wound repair in vivo[J]. PLoS One, 2012, 7(10): e48040.
[46]
Occleston NL, OKane S, Laverty HG, et al. Discovery and development of avotermin (recombinant human transforming growth factor beta 3): a new class of prophylactic therapeutic for the improvement of scarring[J]. Wound Repair Regen, 2011, 19(1): s38-s48.
[47]
Sato M, Muragaki Y, Saika S, et al. Targeted disruption of TGFβ1/Smad3 signalling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction[J]. J Clin Invest, 2003, 112(10):1486-1494.
[48]
Zubair M, Ahmad J. Role of growth factors and cytokines in diabetic foot ulcer healing: a detailed review[J]. Rev Endocr Metab Disord, 2019, 20(2):207-217.
[49]
Martino MM, Briquez PS, Guc E, et al. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing[J]. Science, 2014, 343(6173): 885-888.
[50]
White MJV, Briquez PS, White DAV, et al. VEGF-A, PDGF-BB and HB-EGF engineered for promiscuous super affinity to the extracellular matrix improve wound healing in a model of type 1 diabetes[J]. NPJ Regen Med, 2021, 6(1): 76.
[51]
韩春茂,程飚.皮肤创面外用生长因子的临床指南[J].中华烧伤杂志2017, 33(12): 721-727.
[1] 欧阳剑锋, 李炳权, 叶永恒, 胡少宇, 向阳. 关节镜联合富血小板血浆治疗粘连性肩周炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 765-772.
[2] 陈腊青, 林佳佳, 毛洪刚, 童冠海, 汪梦娜, 夏红波, 刘卓, 徐海霞, 赵玉华, 张传领. 血清细胞因子及呼出气一氧化氮在哮喘-慢性阻塞性肺疾病重叠综合征中的临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 316-320.
[3] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[4] 李硕, 尹希, 祁连港, 王丽, 刘宗宝. 浓缩生长因子在促进失神经皮瓣术后神经再生的应用前景[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 547-551.
[5] 刘江涛, 王一勇, 欧阳容兰, 黄书润. 采用改良胸脐带蒂皮瓣修复手腕背部深度创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 321-325.
[6] 宫镇江, 王守一, 姚超, 庞永志, 崔婧. sticky bone混合浓缩生长因子应用于水平骨增量患者的临床效果研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 430-435.
[7] 李永浩, 高雪菲, 郭田田, 张进, 张彩针, 刘静. 肥胖合并甲状腺癌相关机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 311-315.
[8] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[9] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[10] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[11] 吴寅, 陈智琴, 高勇, 权明. Her-2阳性结直肠癌的诊治进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 420-425.
[12] 刘一, 文旖旎, 吴映辉. 过敏性紫癜患儿外周血辅助性T细胞、调节性T细胞细胞因子与肾损害的相关性分析[J]. 中华肾病研究电子杂志, 2023, 12(05): 271-275.
[13] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[14] 刘立业, 赵德芳. 非酒精性脂肪肝患者血清细胞因子信号转导抑制因子3、肝X受体α水平与CT影像学特征的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 211-215.
[15] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
阅读次数
全文


摘要