切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2023, Vol. 18 ›› Issue (02) : 180 -183. doi: 10.3877/cma.j.issn.1673-9450.2023.02.015

综述

间充质干细胞治疗吸入性损伤的动物实验研究进展
沈纵1, 魏晨如1, 朱邦晖1, 包郁露1, 伍国胜1, 孙瑜1,()   
  1. 1. 200433 上海,海军军医大学第一附属医院烧伤外科 全军烧伤研究所 中国医学科学院烧伤暨烧创复合伤救治关键技术创新单元
  • 收稿日期:2023-01-18 出版日期:2023-04-01
  • 通信作者: 孙瑜
  • 基金资助:
    国家自然科学基金面上项目(82272257); 海军军医大学高等级成果培植计划(2018-CGPZ-B03); 海军军医大学第一附属医院"深蓝123"军事医学研究专项自由探索项目(2020SLZ009)

Advances in animal experiment studies on mesenchymal stem cells for the treatment of inhalation injury

Zong Shen1, Chenru Wei1, Banghui Zhu1, Yulu Bao1, Guosheng Wu1, Yu Sun1,()   

  1. 1. Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Burn Institute of PLA, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
  • Received:2023-01-18 Published:2023-04-01
  • Corresponding author: Yu Sun
引用本文:

沈纵, 魏晨如, 朱邦晖, 包郁露, 伍国胜, 孙瑜. 间充质干细胞治疗吸入性损伤的动物实验研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 180-183.

Zong Shen, Chenru Wei, Banghui Zhu, Yulu Bao, Guosheng Wu, Yu Sun. Advances in animal experiment studies on mesenchymal stem cells for the treatment of inhalation injury[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(02): 180-183.

吸入性损伤是由热力及吸入化学物质引起的呼吸道和肺实质的损伤,作为烧伤三大主要死亡原因之一,病死率较高,临床上尚无特异有效的治疗方法。间充质干细胞具有归巢、促进增殖、抗细胞凋亡、自分泌与旁分泌、抗炎与免疫调节等作用。文章主要综述了不同组织来源的间充质干细胞治疗吸入性损伤的动物实验研究,表明间充质干细胞可以通过多种途径减轻吸入性损伤,提高治疗效果,改善疾病预后,是具有较好临床应用前景的治疗选择。

Inhalation injury is one of the three major causes of death in burns, which damages the respiratory tract or pulmonary parenchyma by heat or chemical irritants carried into the airways during respiration. The mortality of inhalation injury is high, however there is no specific and effective methods of clinical treatment. Mesenchymal stem cells have the functions of homing, promoting proliferation, anti-apoptosis, autocrine and paracrine, anti-inflammatory and immunomodulatory effects. This article reviews a large number of animal experimental studies on the treatment of inhalation injury with mesenchymal stem cells from different sources, which shows that mesenchymal stem cells can attenuate inhalation injury and improve the effectiveness of treatments and the prognosis of disease in various ways. Thus, the cell therapy with mesenchymal stem cells is an available option with promising prospects of clinical application.

[1]
Herndon DN. Total Burn Care,5/E[M]. Fifth. Singapore: elsevier, 2018: 174-183.
[2]
Galeiras R, Seoane-Quiroga L, Pertega-Diaz S. Prevalence and prognostic impact of inhalation injury among burn patients: a systematic review and meta-analysis[J]. J Trauma Acute Care Surg, 2020, 88(2): 330-344.
[3]
程文凤. 中国烧伤流行病学研究现状及多中心大面积烧伤患者流行病学调查分析[D]. 北京:中国人民解放军医学院,2017: 33.
[4]
豆哲,张国安. 系统综述我国烧伤患者吸入性损伤的流行病学特征[J]. 中华烧伤杂志2021, 37(7): 7.
[5]
Jones SW, Williams FN, Cairns BA, et al. Inhalation injury: pathophysiology, diagnosis, and treatment[J]. Clin Plast Surg, 2017, 44(3): 505-511.
[6]
Holley AD, Reade MC, Lipman J, et al. There is no fire without smoke! Pathophysiology and treatment of inhalational injury in burns: a narrative review[J]. Anaesth Intensive Care, 2020, 48(2): 114-122.
[7]
Mercel A, Tsihlis ND, Maile R, et al. Emerging therapies for smoke inhalation injury: a review[J]. J Transl Med, 2020, 18(1): 141.
[8]
Farkhad NK, Mahmoudi A, Mahdipour E. How similar are human mesenchymal stem cells derived from different origins? A Review of comparative Studies[J]. Curr Stem Cell Res Ther, 2021, 16(8): 980-993.
[9]
L P K, Kandoi S, Misra R, et al. The mesenchymal stem cell secretome: a new paradigm towards cell-free therapeutic mode in regenerative medicine[J]. Cytokine Growth Factor Rev, 2019, 46: 1-9.
[10]
Abreu SC, Antunes MA, Xisto DG, et al. Bone marrow, adipose, and lung tissue-derived murine mesenchymal stromal cells release different mediators and differentially affect airway and lung parenchyma in experimental asthma[J]. Stem Cells Transl Med, 2017, 6(6): 1557-1567.
[11]
Yip HK, Fang WF, Li YC, et al. Human umbilical cord-derived mesenchymal stem cells for acute respiratory distress syndrome[J]. Crit Care Med, 2020, 48(5): e391-e399.
[12]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
[13]
Matheakakis A, Batsali A, Papadaki HA, et al. Therapeutic implications of mesenchymal stromal cells and their extracellular vesicles in autoimmune diseases: from biology to clinical applications[J]. Int J Mol Sci, 2021, 22(18): 10132.
[14]
Najar M, Melki R, Khalife F, et al. Therapeutic mesenchymal stem/stromal cells: value, challenges and optimization[J]. Front Cell Dev Biol, 2021, 9: 716853.
[15]
Naji A, Eitoku M, Favier B, et al. Biological functions of mesenchymal stem cells and clinical implications[J]. Cell Mol Life Sci, 2019, 76(17): 3323-3348.
[16]
Kabat M, Bobkov I, Kumar S, et al. Trends in mesenchymal stem cell clinical trials 2004-2018: is efficacy optimal in a narrow dose range?[J]. Stem Cells Transl Med, 2020, 9(1): 17-27.
[17]
Purwaningrum M, Jamilah NS, Purbantoro SD, et al. Comparative characteristic study from bone marrow-derived mesenchymal stem cells[J]. J Vet Sci, 2021, 22(6): e74.
[18]
Liang Y, Yin C, Lu XI, et al. Bone marrow mesenchymal stem cells protect lungs from smoke inhalation injury by differentiating into alveolar epithelial cells via Notch signaling[J]. J Biosci, 2019, 44(1): 2.
[19]
金朝远,戴清霞,周芳庆,等. 热休克蛋白60对间充质干细胞在光气急性肺损伤中的影响[J]. 中华劳动卫生职业病杂志2021, 39(2): 4.
[20]
Jin C, Zhou F, Zhang L, et al. Overexpression of heat shock protein 70 enhanced mesenchymal stem cell treatment efficacy in phosgene-induced acute lung injury[J]. J Biochem Mol Toxicol, 2020, 34(8): e22515.
[21]
Shao Y, Shen J, Zhou F, et al. Mesenchymal stem cells overexpressing Ang1 attenuates phosgene-induced acute lung injury in rats[J]. Inhal Toxicol, 2018, 30(7/8): 313-320.
[22]
刘名倬,王俊杰,付忠华,等. 沉默非肌肉肌球蛋白ⅡA的骨髓间充质干细胞对烟雾吸入性损伤大鼠早期肺损伤的影响[J]. 中华烧伤杂志2017, 12(33): 766-771.
[23]
Sharma S, Muthu S, Jeyaraman M, et al. Translational products of adipose tissue-derived mesenchymal stem cells: bench to bedside applications[J]. World J Stem Cells, 2021, 13(10): 1360-1381.
[24]
Ihara K, Fukuda S, Enkhtaivan B, et al. Adipose-derived stem cells attenuate pulmonary microvascular hyperpermeability after smoke inhalation[J]. PLoS One, 2017, 12(10): e0185937.
[25]
Gao J, Yuan J, Liu Q, et al. Adipose-derived stem cells therapy effectively attenuates PM2.5-induced lung injury[J]. Stem Cell Res Ther, 2021, 12(1): 355.
[26]
陈尚雅,邵华,韩茹,等. 脂肪间充质干细胞对染矽尘大鼠肺损伤修复的研究[J]. 中华劳动卫生职业病杂志2019, 37(1): 6.
[27]
Chen S, Cui G, Peng C, et al. Transplantation of adipose-derived mesenchymal stem cells attenuates pulmonary fibrosis of silicosis via anti-inflammatory and anti-apoptosis effects in rats[J]. Stem Cell Res Ther, 2018, 9(1): 110.
[28]
Xie Q, Liu R, Jiang J, et al. What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment?[J]. Stem Cell Res Ther, 2020, 11(1): 519.
[29]
Hong SY, Teng SW, Lin W, et al. Allogeneic human umbilical cord-derived mesenchymal stem cells reduce lipopolysaccharide-induced inflammation and acute lung injury[J]. Am J Transl Res, 2020, 12(10): 6740-6750.
[30]
Tu C, Wang Z, Xiang E, et al. Human umbilical cord mesenchymal stem cells promote macrophage PD-L1 expression and attenuate acute lung injury in mice[J]. Curr Stem Cell Res Ther, 2022, 17(6): 564-575.
[31]
Zhu H, Xiong Y, Xia Y, et al. Therapeutic effects of human umbilical cord-derived mesenchymal stem cells in acute lung iInjury mice[J]. Sci Rep, 2017, 7: 39889.
[32]
Wang Y, Li H, Li X, et al. Hypoxic preconditioning of human umbilical cord mesenchymal stem cells is an effective strategy for treating acute lung injury[J]. Stem Cells Dev, 2021, 30(3): 128-134.
[33]
Liu QW, Huang QM, Wu HY, et al. Characteristics and therapeutic potential of human amnion-derived stem cells[J]. Int J Mol Sci, 2021, 22(2): 970.
[34]
Cui P, Xin H, Yao Y, et al. Human amnion-derived mesenchymal stem cells alleviate lung injury induced by white smoke inhalation in rats[J]. Stem Cell Res Ther, 2018, 9(1): 101.
[35]
Zhang S, Jiang W, Ma L, et al. Nrf2 transfection enhances the efficacy of human amniotic mesenchymal stem cells to repair lung injury induced by lipopolysaccharide[J]. J Cell Biochem, 2018, 119(2): 1627-1636.
[36]
Chen L, Qu J, Xiang C. The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine[J]. Stem Cell Res Ther, 2019, 10(1): 1.
[37]
Ren H, Zhang Q, Wang J, et al. Comparative effects of umbilical cord- and menstrual blood-derived MSCs in repairing acute lung injury[J]. Stem Cells Int, 2018, 2018: 7873625.
[38]
Xiang B, Chen L, Wang X, et al. Transplantation of menstrual blood-derived mesenchymal stem cells promotes the repair of LPS-induced acute lung injury[J]. Int J Mol Sci, 2017, 18(4): 689.
[1] 熊欢庆, 李玉娟, 陈键, 刘刚, 李志超, 金发光. 丹参酮IIA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 455-459.
[2] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[3] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[4] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[5] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[6] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[7] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[8] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[9] 陈玉婷, 周影, 陆雅斐, 江滨. 缺氧预处理间充质干细胞的功能及机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 115-120.
[10] 冯星, 靳洪涛, 马隽, 宋永周, 刘爱京. 间充质干细胞治疗炎性关节炎的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 87-92.
[11] 雷双银, 习剑鑫, 贺羽轩, 姚静宜, 石博雅, 马杰, 池光范, 李美英. 间充质干细胞源外泌体在神经退行性疾病治疗中的应用与进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 93-100.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要