切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2023, Vol. 18 ›› Issue (03) : 265 -269. doi: 10.3877/cma.j.issn.1673-9450.2023.03.016

综述

线粒体与椎间盘退变
张永博, 张亮(), 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴   
  1. 116044 大连医科大学研究生院
    225001 扬州大学临床医学院
  • 收稿日期:2023-01-14 出版日期:2023-06-01
  • 通信作者: 张亮
  • 基金资助:
    国家自然科学基金面上项目(82172462,81972136); 江苏省中医药科技发展计划项目(YB2020085); 江苏省高层次卫生人才"六个一工程"拔尖人才科研项目(LGY2019035)

Mitochondrial and intervertebral disc degeneration

Yongbo Zhang, Liang Zhang(), Liuyang Chen, Rui Dai, Hua Sun, Sheng Yang, Bo Meng, Qing Peng   

  1. Graduate School of Dalian Medical University, Dalian 116044, China
    Clinical Medical College of Yangzhou University, Yangzhou 225001, China
  • Received:2023-01-14 Published:2023-06-01
  • Corresponding author: Liang Zhang
引用本文:

张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.

Yongbo Zhang, Liang Zhang, Liuyang Chen, Rui Dai, Hua Sun, Sheng Yang, Bo Meng, Qing Peng. Mitochondrial and intervertebral disc degeneration[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(03): 265-269.

腰痛已成为全球范围内致残的首要原因,且发病率逐年上升。椎间盘退变(IVDD)是腰痛的主要致病因素,但其病理机制尚未明确。线粒体是生物体内产能的重要细胞器,不仅在生理过程中承担重要作用,还参与诸多关节退行性疾病的病理过程,但线粒体参与椎间盘退变的机制尚未阐明。本文对近年来线粒体参与IVDD机制及相应治疗策略的研究进展综述。

Low back pain has become the leading cause of disability in worldwide, and the incidence is increasing year by year. Intervertebral disc degeneration(IVDD) is the main causative factor of low back pain, but its pathological mechanism is not well understood. Mitochondria are important organelles for energy production in organisms, not only playing an important role in physiological processes, but also participating in the pathological processes of many joint degenerative diseases. However, the mechanism of mitochondrial participation in intervertebral disc degeneration has not yet been elucidated, and this article reviews the research progress of mitochondria in IVDD and corresponding treatment strategies in recent years by reviewing relevant literature.

[1]
Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017 [J]. Lancet, 2018, 392(10159): 1789-1858.
[2]
Zhao L, Manchikanti L, Kaye AD, et al. Treatment of discogenic low back pain: current treatment strategies and future options-a literature review [J]. Curr Pain Headache Rep, 2019, 23(11): 86.
[3]
Hu S, Chen L, Al Mamun A, et al. The therapeutic effect of TBK1 in intervertebral disc degeneration via coordinating selective autophagy and autophagic functions [J]. J Adv Res, 2021, 30: 1-13.
[4]
Chen S, Lei L, Li Z, et al. Grem1 accelerates nucleus pulposus cell apoptosis and intervertebral disc degeneration by inhibiting TGF-beta-mediated Smad2/3 phosphorylation [J]. Exp Mol Med, 2022, 54(4): 518-530.
[5]
Katayama H, Hama H, Nagasawa K, et al. Visualizing and modulating mitophagy for therapeutic studies of neurodegeneration [J]. Cell, 2020, 181(5): 1176-1187.
[6]
Bock FJ, Tait S WG. Mitochondria as multifaceted regulators of cell death [J]. Nat Rev Mol Cell Biol, 2020, 21(2): 85-100.
[7]
Zhao K, An R, Xiang Q, et al. Acid-sensing ion channels regulate nucleus pulposus cell inflammation and pyroptosis via the NLRP3 inflammasome in intervertebral disc degeneration [J]. Cell Prolif, 2021, 54(1): 12941.
[8]
Chu G, Zhang W, Han F, et al. The role of microenvironment in stem cell-based regeneration of intervertebral disc [J]. Front Bioeng Biotechnol, 2022, 10: 968862.
[9]
Ding SL, Zhang TW, Zhang QC, et al. Excessive mechanical strain accelerates intervertebral disc degeneration by disrupting intrinsic circadian rhythm [J]. Exp Mol Med, 2021, 53(12): 1911-1923.
[10]
Feng Y, Wang H, Chen Z, et al. High glucose mediates the ChREBP/p300 transcriptional complex to activate proapoptotic genes puma and BAX and contributes to intervertebral disc degeneration [J]. Bone, 2021, 153: 116164.
[11]
Hashimoto K, Aizawa T, Kanno H, et al. Adjacent segment degeneration after fusion spinal surgery-a systematic review [J]. Int Orthop, 2019, 43(4): 987-993.
[12]
Kamali A, Ziadlou R, Lang G, et al. Small molecule-based treatment approaches for intervertebral disc degeneration: current options and future directions [J]. Theranostics, 2021, 11(1): 27-47.
[13]
Song Y, Lu S, Geng W, et al. Mitochondrial quality control in intervertebral disc degeneration [J]. Exp Mol Med, 2021, 53(7): 1124-1133.
[14]
Miwa S, Kashyap S, Chini E, et al. Mitochondrial dysfunction in cell senescence and aging [J]. J Clin Invest, 2022, 132(13): e158447.
[15]
Zhu Z, He Z, Tang T, et al. Integrative bioinformatics analysis revealed mitochondrial dysfunction-related genes underlying intervertebral disc degeneration [J]. Oxid Med Cell Longev, 2022, 2022: 1372483.
[16]
Ma H, Xie C, Chen Z, et al. MFG-E8 alleviates intervertebral disc degeneration by suppressing pyroptosis and extracellular matrix degradation in nucleus pulposus cells via Nrf2/TXNIP/NLRP3 axis [J]. Cell Death Discov, 2022, 8(1): 209.
[17]
Shi S, Kang XJ, Zhou Z, et al. Excessive mechanical stress-induced intervertebral disc degeneration is related to Piezo1 overexpression triggering the imbalance of autophagy/apoptosis in human nucleus pulpous [J]. Arthritis Res Ther, 2022, 24(1): 119.
[18]
Li BL, Liu X, Gao M, et al. Programmed NP cell death induced by mitochondrial ROS in a one-strike loading disc degeneration organ culture model [J]. Oxid Med Cell Longev, 2021: 5608133.
[19]
Chen Y, Lin J, Chen J, et al. Mfn2 is involved in intervertebral disc degeneration through autophagy modulation [J]. Osteoarthritis Cartilage, 2020, 28(3): 363-374.
[20]
Kang L, Liu S, Li J, et al. The mitochondria-targeted anti-oxidant MitoQ protects against intervertebral disc degeneration by ameliorating mitochondrial dysfunction and redox imbalance [J]. Cell Prolif, 2020, 53(3): 12779.
[21]
Wang JW, Zhu L, Shi PZ, et al. 1,25(OH)(2)D(3) mitigates oxidative stress-induced damage to nucleus pulposus-derived mesenchymal stem cells through PI3K/Akt pathway [J]. Oxid Med Cell Longev, 2022: 1427110.
[22]
Nan LP, Wang F, Ran D, et al. Naringin alleviates H(2)O(2)-induced apoptosis via the PI3K/Akt pathway in rat nucleus pulposus-derived mesenchymal stem cells [J]. Connect Tissue Res, 2020, 61(6): 554-567.
[23]
Wang Z, Chen H, Tan Q, et al. Inhibition of aberrant Hif1alpha activation delays intervertebral disc degeneration in adult mice [J]. Bone Res, 2022, 10(1): 2.
[24]
Xiang Q, Cheng Z, Wang J, et al. Allicin attenuated advanced oxidation protein product-induced oxidative stress and mitochondrial apoptosis in human nucleus pulposus cells [J]. Oxid Med Cell Longev, 2020: 6685043.
[25]
Zhao Y, Qiu C, Wang W, et al. Cortistatin protects against intervertebral disc degeneration through targeting mitochondrial ROS-dependent NLRP3 inflammasome activation [J]. Theranostics, 2020, 10(15): 7015-7033.
[26]
Wang Y, Yang Y, Zuo R, et al. FOXO3 protects nucleus pulposus cells against apoptosis under nutrient deficiency via autophagy [J]. Biochem Biophys Res Commun, 2020, 524(3): 756-763.
[27]
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death [J]. Cell Mol Immunol, 2021, 18(5): 1106-1121.
[28]
Yin H, Wang K, Das A, et al. The REDD1/TXNIP complex accelerates oxidative stress-induced apoptosis of nucleus pulposus cells through the mitochondrial pathway [J]. Oxid Med Cell Longev, 2021: 7397516.
[29]
Jing D, Wu W, Deng X, et al. FoxO1a mediated cadmium-induced annulus fibrosus cells apoptosis contributes to intervertebral disc degeneration in smoking [J]. J Cell Physiol, 2021, 236(1): 677-687.
[30]
Zhang YH, Shangguan WJ, Zhao ZJ, et al. Naringin inhibits apoptosis induced by cyclic stretch in rat annular cells and partially attenuates disc degeneration by inhibiting the ROS/NF-kappaB pathway [J]. Oxid Med Cell Longev, 2022: 6179444.
[31]
Tian Y, Duan J, Cao Y, et al. Bardoxolone methyl ameliorates compression-induced oxidative stress damage of nucleus pulposus cells and intervertebral disc degeneration ex vivo [J]. Front Bioeng Biotechnol, 2021, 9: 814040.
[32]
Hua W, Li S, Luo R, et al. Icariin protects human nucleus pulposus cells from hydrogen peroxide-induced mitochondria-mediated apoptosis by activating nuclear factor erythroid 2-related factor 2 [J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(1): 165575.
[33]
He R, Wang Z, Cui M, et al. HIF1A alleviates compression-induced apoptosis of nucleus pulposus derived stem cells via upregulating autophagy [J]. Autophagy, 2021, 17(11): 3338-3360.
[34]
Li B, Lu ZY, Jiang SD, et al. Smad7 is highly expressed in human degenerative discs and participates in IL-1beta-induced apoptosis of rat AF cells via the mitochondria pathway [J]. Oxid Med Cell Longev, 2022: 2912276.
[35]
Yang X. Mechanism of protective role of miR-874-3p in intervertebral disc degeneration [J]. Ann Transl Med, 2022, 10(4): 213.
[36]
Evavold CL, Hafner-Bratkovic I, Devant P, et al. Control of gasdermin D oligomerization and pyroptosis by the ragulator-rag-mTORC1 pathway [J]. Cell, 2021, 184(17): 4495-4511.
[37]
Ma Z, Tang P, Dong W, et al. SIRT1 alleviates IL-1beta induced nucleus pulposus cells pyroptosis via mitophagy in intervertebral disc degeneration [J]. Int Immunopharmacol, 2022, 107: 108671.
[38]
Zhang W, Li G, Luo R, et al. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis [J]. Exp Mol Med, 2022, 54(2): 129-142.
[39]
Weindel CG, Martinez EL, Zhao X, et al. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis [J]. Cell, 2022, 185(17): 3214-3231.
[40]
Cao C, Chen S, Song Z, et al. Inflammatory stimulation mediates nucleus pulposus cell necroptosis through mitochondrial function disfunction and oxidative stress pathway [J]. Front Biosci (Landmark Ed), 2022, 27(4): 111.
[41]
Lin H, Peng Y, Li J, et al. Reactive oxygen species regulate endoplasmic reticulum stress and ER-mitochondrial Ca2+ crosstalk to promote programmed necrosis of rat nucleus pulposus cells under compression [J]. Oxid Med Cell Longev, 2021: 8810698.
[42]
Sun K, Jing X, Guo J, et al. Mitophagy in degenerative joint diseases [J]. Autophagy, 2021, 17(9): 2082-2092.
[43]
Wang DK, Zheng HL, Zhou WS, et al. Mitochondrial dysfunction in oxidative stress-mediated intervertebral disc degeneration [J]. Orthop Surg, 2022, 14(8): 1569-1582.
[44]
Wang Y, Hu Y, Wang H, et al. Deficiency of MIF accentuates overloaded compression-induced nucleus pulposus cell oxidative damage via depressing mitophagy [J]. Oxid Med Cell Longev, 2021: 6192498.
[45]
Wang Y, Wang H, Zhuo Y, et al. SIRT1 alleviates high-magnitude compression-induced senescence in nucleus pulposus cells via PINK1-dependent mitophagy [J]. Aging (Albany NY), 2020, 12(16): 16126-16141.
[46]
Madhu V, Boneski PK, Silagi E, et al. Hypoxic regulation of mitochondrial metabolism and mitophagy in nucleus pulposus cells is dependent on HIF-1alpha-BNIP3 axis [J]. J Bone Miner Res, 2020, 35(8): 1504-1524.
[47]
Yi W, Lan H, Wen Y, et al. HO-1 overexpression alleviates senescence by inducing autophagy via the mitochondrial route in human nucleus pulposus cells [J]. J Cell Physiol, 2020, 235(11): 8402-8415.
[48]
Lin J, Zheng X, Zhang Z, et al. Inhibition of LRRK2 restores parkin-mediated mitophagy and attenuates intervertebral disc degeneration [J]. Osteoarthritis Cartilage, 2021, 29(4): 579-591.
[49]
Lan T, Yan B, Guo W, et al. VDR promotes nucleus pulposus cell mitophagy as a protective mechanism against oxidative stress injury [J]. Free Radic Res, 2022, 56(3/4): 316-327.
[50]
Lin J, Zhuge J, Zheng X, et al. Urolithin a-induced mitophagy suppresses apoptosis and attenuates intervertebral disc degeneration via the AMPK signaling pathway [J]. Free Radic Biol Med, 2020, 150: 109-119.
[51]
Zhan S, Wang K, Xiang Q, et al. lncRNA HOTAIR upregulates autophagy to promote apoptosis and senescence of nucleus pulposus cells [J]. J Cell Physiol, 2020, 235(3): 2195-2208.
[52]
Chen S, Tian Q, Shang C, et al. Synergistic utilization of necrostatin-1 and Z-VAD-FMK efficiently promotes the survival of compression-induced nucleus pulposus cells via alleviating mitochondrial dysfunction [J]. Biomed Res Int, 2020: 6976317.
[53]
Peng X, Wang K, Zhang C, et al. The mitochondrial antioxidant SS-31 attenuated lipopolysaccharide-induced apoptosis and pyroptosis of nucleus pulposus cells via scavenging mitochondrial ROS and maintaining the stability of mitochondrial dynamics [J]. Free Radic Res, 2021, 55(11/12): 1080-1093.
[54]
Yu H, Hou G, Cao J, et al. Mangiferin alleviates mitochondrial ROS in nucleus pulposus cells and protects against intervertebral disc degeneration via suppression of NF-kappaB signaling pathway [J]. Oxid Med Cell Longev, 2021: 6632786.
[1] 樊逸隽, 杨枫, 王玮, 殷鹤英, 刘俊. 喉前淋巴结转移对甲状腺乳头状癌诊疗价值的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 306-310.
[2] 李晖, 范志勇, 耿西林, 常虎林, 吴武军, 张煜. 肝癌中线粒体膜蛋白ATAD3A表达与临床病理特征及预后的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 157-161.
[3] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[4] 张林, 刘芳, 赵静, 刘勇, 周青. 远程康复在慢性阻塞性肺疾病患者肺康复中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 601-604.
[5] 李丹阳, 李满祥. 肠道菌群失调在肺动脉高压发病中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 432-434.
[6] 谯钰琪, 惠盼, 南岩东. DGKζ的结构功能及研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 117-120.
[7] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[8] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[9] 栾恒钰, 赛晓勇. 创伤后应激障碍的治疗现状及研究进展[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 112-118.
[10] 阳莹, 崔亚梅, 邵强, 赵宁, 陶文强, 陈家泉, 徐泽尧, 钱克俭, 刘芬. 线粒体自噬对肺泡巨噬细胞焦亡的调控作用及其机制[J]. 中华重症医学电子杂志, 2023, 09(01): 69-77.
[11] 黄文鹏, 邱永康, 杨琦, 宋乐乐, 陈钊, 范岩, 康磊. PET相关影像组学在肿瘤预后中的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 104-110.
[12] 吴一菡, 雷章, 卢宏达. MUC16/CA125在良恶性肿瘤诊治中的作用及其研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 591-595.
[13] 肖国中, 林宏城. 大便失禁治疗技术的研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(07): 696-700.
[14] 于乾雪, 廖学梅, 孙龙龙, 范梦莹, 蒋明超, 孟慧, 李瑞基. 线粒体功能障碍与卵巢早衰的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 283-288.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要