切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2023, Vol. 18 ›› Issue (03) : 270 -273. doi: 10.3877/cma.j.issn.1673-9450.2023.03.017

综述

微针法表皮移植应用的新进展
王雪, 程微, 苏建东()   
  1. 215000 苏州,南京医科大学附属苏州医院烧伤整形科
    215006 苏州,苏州大学物理科学与技术学院 江苏省薄膜重点实验室
  • 收稿日期:2023-04-03 出版日期:2023-06-01
  • 通信作者: 苏建东

New progress in application of epidermal transplantation via microneedle techniques

Xue Wang, Wei Cheng, Jiandong Su()   

  1. Department of Burn and Plastic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou 215000, China
    School of Physical Science and Technology, Soochow University, and Jiangsu Key Laboratory of Thin Films, Suzhou 215006, China
  • Received:2023-04-03 Published:2023-06-01
  • Corresponding author: Jiandong Su
引用本文:

王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.

Xue Wang, Wei Cheng, Jiandong Su. New progress in application of epidermal transplantation via microneedle techniques[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(03): 270-273.

皮肤移植是烧创伤、慢性创面修复的主要方法,特别在大面积烧伤创面治疗中,植皮扩展比例、供区愈合时间、供受区瘢痕形成及手术疼痛等瓶颈问题亟待解决。本文综述微针技术的应用现状及皮肤移植技术的新进展,并介绍一种硅基微针负压提取法进行自体表皮移植的研究现状。

Skin grafting is the main method of repairing burn wounds and chronic wounds, especially in the treatment of large-scale burns, the bottleneck problems such as skin graft expansion ratio, donor site healing time, scar formation in donar site and recipient area and surgical pain need to be solved urgently. This review summarizes the application status of microneedle technology and the new progress of skin transplantation, and focuses on the research progress of autologous epidermal transplantation by silicon-based microneedle negative pressure extraction.

[1]
Abdullah H, Phairatana T, Jeerapan I. Tackling the challenges of developing microneedle-basedelectrochemical sensors[J]. Microchimica Acta, 2022, 189(11): 440.
[2]
Ni M, Li W, Yuan B, et al. Micro-structuredP-N junction surfaces: large-scale preparation, antifouling properties, and a synergistic antibacterial mechanism[J]. J Mater Chem B, 2023, 11(6):1312-1319.
[3]
Russell LM, Wiedersberg S, Delgado-Charro MB. The determination of stratum corneum thickness: an alternative approach[J]. Eur J Pharm Biopharm200869(3):861-870.
[4]
Moniz T, Costa Lima SA, Reis S. Human skin models: from healthy to disease-mimetic systems; characteristics and applications[J]. Br J Pharmacol, 2020, 177(19):4314-4329.
[5]
Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system[J]. Biomed Pharmacother, 2019, 109: 1249-1258.
[6]
Cárcamo-Martínez ÁMallon B, Domínguez-Robles J, et al. Hollow microneedles: a perspective in biomedical applications[J]. Int J Pharm, 2021, 599: 120455.
[7]
Hou A, Quan G, Yang B, et al. Rational design of rapidly separating dissolving microneedles for precise drug delivery by balancing the mechanical performance and disintegration rate[J]. Adv Healthc Mater, 2019, 8(21): e1900898.
[8]
Henry S, McAllister DV, Allen MG, et al. Microfabricated microneedles: a novel approach totransdermal drug delivery[J]. J Pharm Sci, 1999, 88(9): 948.
[9]
田霞,王宁,丁江生. 空心微针透皮给药技术的研究进展[J]. 中国新药杂志2021, 30(2): 119-124.
[10]
Creighton RL, Woodrow KA. Microneedle-mediated vaccine delivery to the oral mucosa[J]. Adv Healthc Mater, 2019, 8(4): e1801180.
[11]
Kim H, Lee HS, Jeon Y, et al. Bioresorbable, miniaturized porous silicon needles on a flexible water-soluble backing for unobtrusive, sustained delivery of chemotherapy[J]. ACS Nano, 2020, 14(6):7227-7236.
[12]
陈丹洋,吴小蔚. 微针在美容整形外科应用中的进展[J]. 安徽医药2018, 22(1): 12-16.
[13]
Ahmed Saeed AL-Japairai K, Mahmood S, Hamed Almurisi S, et al. Current trends in polymer microneedle for transdermal drug delivery[J]. IntJ Pharm, 2020, 587: 119673.
[14]
Larraneta E, Lutton REM, Woolfson AD, et al. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development[J]. Materials Science and Engineering: R: Reports, 2016, 104: 1-32.
[15]
Cheng W, Wang X, Zou S, et al. Fabrication of black silicon microneedle arrays for high drug loading[J]. Journal of Functional Biomaterials, 2023, 14(5): 245.
[16]
Donnelly RF, Raj Singh TR, Woolfson AD. Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety[J]. Drug Deliv, 2010, 17(4): 187-207.
[17]
Morales-FLorido IM, Miranda Calderon JE, Gómez Sámano ,et al. Microneedles as an alternative strategy for drug delivery[J]. J Pharm Pharm Sci, 2022, 25: 93-109.
[18]
代柏妍,常明,陈龙飞,等. 微针的制备及应用研究[J]. 化学通报(印刷版), 2022, 85(10): 1186-1195,1242.
[19]
Ali R, Mehta P, Arshad MS, et al. Transdermal microneedles-a materials perspective[J]. AAPS Pharm Sci Tech, 201921(1):12.
[20]
Nguyen TT, Nguyen TTD, Tran NM, et al. Advances of microneedles in hormone delivery[J]. Biomed Pharmacother, 2022145:112393.
[21]
Cao X, Chen G. Advances in microneedles for non-transdermal applications[J]. Expert Opin Drug Deliv, 2022, 19(9): 1081-1097.
[22]
Wang PM, Cornwell M, Hill J, et al. Precise microinjection into skin using hollow microneedles[J]. J Invest Dermatol, 2006, 126(5): 1080-1087.
[23]
Martanto W, Moore JS, Couse T, et al. Mechanism of fluid infusion during microneedle insertion and retraction[J]. J Control Release, 2006, 112(3): 357-361.
[24]
贾晓明,张海军. 皮肤移植的发展与应用[J]. 实用器官移植电子杂志2019, 7(4): 254-256.
[25]
米增法,高优,李金虎. 不同植皮方式在修复大面积烧伤创面中疗效的对比研究[J]. 陕西医学杂志2017, 46(12): 1716-1717,1724.
[26]
Balch CM, Marzoni FA. Skin transplantation during the pre-Reverdin era, 1804-1869[J]. Surg Gynecol Obstet, 1977, 144(5): 766-773.
[27]
Jay V. This month in history: Jacques Louis Reverdin[J]. J R Soc Med, 1999, 92(10): 548.
[28]
郑少萍,郭树忠. 皮肤移植的发展历史[J]. 中国美容医学杂志2001, 10(1): 78-80.
[29]
Valencia IC, Falabella AF, Eaglstein WH. Skin grafting[J]. Dermatol Clin, 2000, 18(3):521-532.
[30]
王鑫,申传安,赵东旭.MEEK微型皮片移植技术的研究进展及应用[J].解放军医学杂志2018, 43(3): 263-267.
[31]
Houschyar KS, Tapking C, Nietzschmann I, etal. Five years experience with meek grafting in the management of extensive burns in an adult burn center[J]. Plast Surg (Oakv), 2019, 27(1): 44-48.
[32]
栗申,郭素娟. 邮票皮、meek微型皮与微粒皮三种植皮方式在修复大面积皮肤缺损创面中的疗效对比研究[J]. 四川解剖学杂志2018, 26(2): 81-83.
[33]
邓景蕊. 自体网状皮移植联合生物敷料覆盖治疗混合度烧伤的临床疗效分析[J]. 中国实用医药2021, 16(31):67-70.
[34]
胡亮. 自体断层真皮移植治疗皮肤组织缺损的临床研究[D]. 江苏大学,2016.
[35]
Rowan MP, Cancio LC, Elster EA, et al. Burn wound healing and treatment: review and advancements[J]. Crit Care, 2015, 19: 243.
[36]
尹凯,胡骁骅,沈余明. 微粒皮移植外层覆盖物的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(3): 253-256.
[37]
林苗远,李豫皖,刘毅,等. 组织工程皮肤的研究热点及应用价值[J]. 中国组织工程研究2022, 26(1): 153-159.
[38]
何秀叶,宋慧锋,郭希民. 组织工程皮肤创面修复动物模型的研究进展[J]. 解放军医学杂志2017, 42(3): 239-242.
[39]
Jones RE, Foster DS, Hu MS, et al. Wound healing and fibrosis: current stem cell therapies[J].Transfusion, 2019, 59(S1): 884-892.
[40]
Sun Q, Li F, Li H, et al. Amniotic fluid stem cells provide considerable advantages in epidermal regeneration: B7H4 creates a moderate inflammation microenvironment to promote wound repair[J]. Sci Rep, 2015, 5: 11560.
[41]
Ishack S, Lipner SR. A review of 3-Dimensional skin bioprinting techniques: applications, approaches, and trends[J]. Dermatol Surg, 2020, 46(12): 1500-1505.
[42]
陈继厐,马法武,秦军,等. 自体皮肤细胞直接移植覆盖创面[J]. 中华整形烧伤外科杂志1988, 4(3): 211.
[43]
Mcheik JN, Barrault C, Pedretti N, et al. Foreskin-isolated keratinocytes provide successful extemporaneous autologous paediatric skin grafts[J]. JTissue Eng Regen Med, 201610(3): 252-260.
[44]
徐林海,焦向阳,季正伦,等. 以胶原海绵为载体培养的人表皮细胞移植[J]. 中国修复重建外科杂志2001, 15(2): 118-121.
[45]
Mulliken JB, Banks-Schlegel S, Kehinde O, et al.Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet, 1981, 1(8211):75-78.
[46]
徐圣博,王鑫,申传安,等. 表皮细胞膜片的培养及临床应用研究进展[J]. 中华损伤与修复杂志(电子版), 201914(6): 455-458.
[47]
Golinski P, Menke H, Hofmann M, et al. Development and characterization of an engraftable tissue-cultured skin autograft: alternative treatmentfor severe electrical injuries[J]. Cells Tissues Organs, 2014, 200(3-4): 227-239.
[48]
Golinski PA, Zöller N, Kippenberger S, et al.Development of an engraftable skin equivalent based on matriderm with human keratinocytes and fibroblasts[J]. Handchir Mikrochir Plast Chir, 2009, 41(6): 327-32.
[49]
Leroy M, Lafleur M, Auger M, et al. Characterization of the structure of human skin substitutes by infrared microspectroscopy[J]. Anal Bioanal Chem, 2013, 405(27):8709-8718.
[50]
Bhardwaj N, Chouhan D, Mandal BB. Tissue engineered skin and wound healing: current strategies and future directions[J]. Curr Pharm Des, 2017, 23(24): 3455-3482.
[51]
Chen BZ, Zhao ZQ, Shahbazi MA, et al. Microneedle-based technology for cell therapy: currentstatus and future directions[J]. Nanoscale Horiz, 2022, 7(7): 715-728.
[52]
Gualeni B, Coulman SA, Shah D, et al. Minimally invasive and targeted therapeutic cell delivery to the skin using microneedle devices[J]. Br J Dermatol, 2018, 178(3): 731-739.
[53]
Chen YH, Wang FY, Chan YS, et al. Biofabricating hollow microneedle array with controllablemicrostructure for cell transplantation[J]. J Biomed Mater Res B Appl Biomater, 2022, 110(9): 1997-2005.
[54]
李彬彬,孙培鸣,孙宏伟,等. 表皮干细胞研究进展[J]. 医学研究杂志2021, 50(1): 156-159.
[55]
苏州大学. 硅基冰微针及其制备方法:CN202210356606.3[P]. 2022-06-07.
[56]
苏州市立医院. 基于硅基微针的负压装置:CN202121561787.0[P]. 2022-03-29.
[57]
Ni M, Li W, Yuan B, et al. Micro-structuredP-N junction surfaces: large-scale preparation, antifouling properties, and a synergistic antibacterial mechanism[J]. J Mater Chem B, 2023, 11(6): 1312-1319.
[58]
Tam J, Wang Y, Farinelli WA, et al. Fractional skin harvesting: autologous skin grafting without donor-site morbidity[J]. Plast Reconstr Surg Glob Open, 2013, 1(6): e47.
[59]
汪显耀,关亚琳,刘忠山. 提高间充质干细胞治疗难愈性创面的策略[J]. 中国组织工程研究2021, 25(7): 7.
[1] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[2] 刘江涛, 王一勇, 欧阳容兰, 黄书润. 采用改良胸脐带蒂皮瓣修复手腕背部深度创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 321-325.
[3] 杨润功. 重视国家军队重大医疗需求以推动创面修复科快速发展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 191-196.
[4] 陆树良. 重视创面修复学科的规范化建设和理论培训[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 188-190.
[5] 黄跃生. 努力建设高水平创面修复新学科[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 185-187.
[6] 肖仕初. 微型皮移植的创新与应用[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 184-184.
[7] 李芳, 李全, 曹胜军, 王凌峰. 生长因子和细胞因子在创面修复过程中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 174-179.
[8] 李晓光, 周杰玉, 刘凯, 火子榕, 谭皓月, 何悦, 张治华, 王振涛, 汪照炎. 拉杆式皮肤扩展器在股前外侧皮瓣术后缺损中的应用[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 144-147.
[9] 王铄链, 刘毅, 胡智瀚. 负压伤口疗法的作用、机制及其在糖尿病足临床治疗中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 69-72.
[10] 王睿甲, 巴特, 黄瑞娟, 王宏宇. 间充质干细胞外泌体在创面修复相关信号通路中的作用研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 440-444.
[11] 任尊, 蔡伟杰, 张瑜博, 卢玉祥, 程鹏飞, 徐铮宇, 韩培. 脱细胞异体真皮与自体刃厚皮片联合移植修复足踝部非负重区创面的临床研究[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 399-404.
[12] 王凌峰, 李全, 曹胜军, 周彪. 我国大面积烧伤救治工作的回顾与展望[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 369-378.
[13] 陈泽群, 褚万立, 申传安, 祝红娟, 叶祥柏, 王星童, 赵帆, 张路, 宋垚垚. 坏死性软组织感染的临床特征及应用综合序贯诊疗策略的临床效果[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 300-307.
[14] 中国生物材料学会烧创伤创面修复材料分会, 中国老年医学学会烧创伤分会, 黄跃生, 黄海华, 罗奇志, 张逸. 三级与二级医院创面修复科基本配置标准的专家共识(2021年版)[J]. 中华损伤与修复杂志(电子版), 2022, 17(03): 195-197.
[15] 耿晨昕, 于昊哲, 冯云. 关注眼用微针体系的构建策略[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 257-261.
阅读次数
全文


摘要