切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2023, Vol. 18 ›› Issue (05) : 454 -459. doi: 10.3877/cma.j.issn.1673-9450.2023.05.017

综述

不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展
王鹏, 肖厚安(), 贾赤宇()   
  1. 710054 西安市第九医院烧伤整形美容科
    421001 衡阳,南华大学衡阳医学院附属第一医院烧伤整形美容科 烧伤整形与创面修复中心
  • 收稿日期:2023-02-25 出版日期:2023-10-01
  • 通信作者: 肖厚安, 贾赤宇
  • 基金资助:
    陕西省重点研发计划(S2021-YF-YBSF-0936); 福建省烧创伤实验室开放课题(XHZDSYS202004,XHZDSYS202103); 厦门市自然科学基金(3502Z20227284); 西安市科技计划(23YXYJ0046)

Research progress of different factors regulating macrophage polarization in chronic refractory wound

Peng Wang, Houan Xiao(), Chiyu Jia()   

  1. Department of Burns and Plastic and Cosmetic Surgery, Xi′an Ninth Hospital, Xi′an 710054, China
    Department of Burns and Plastic and Cosmetic Surgery, Burns Plastic Surgery and Wound Repair Center, the First Hospital Affiliated to Hengyang Medical College, Nanhua University, Hengyang 421001, China
  • Received:2023-02-25 Published:2023-10-01
  • Corresponding author: Houan Xiao, Chiyu Jia
引用本文:

王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.

Peng Wang, Houan Xiao, Chiyu Jia. Research progress of different factors regulating macrophage polarization in chronic refractory wound[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(05): 454-459.

巨噬细胞极化在创面愈合的炎症期、增殖期和组织重塑期三个阶段中均扮演重要的作用。巨噬细胞可塑性较强,且影响巨噬细胞极化的因素较多,机体存在正向调控极化促进创面愈合的因素,也存在负向调控极化或异常极化抑制创面愈合的因素。因此,了解并归纳不同因素调控巨噬细胞极化在慢性难愈性创面中的作用对于研究创面愈合的病理机制十分重要。巨噬细胞定植部位的不同、炎症微环境的差异、干细胞的协同作用、病原微生物感染、细胞生物材料的应用、巨噬细胞自噬以及巨噬细胞脂代谢紊乱等因素参与调控巨噬细胞的极化和转归,同时影响慢性难愈性创面的愈合进程。通过总结不同因素调控巨噬细胞极化在慢性难愈性创面愈合进程中的相关机制,以期为慢性难愈性创面的后续研究提供思路。

Macrophage polarization plays an important role during the stages of wound healing, in terms of the inflammation, the proliferation as well as tissue remodeling. As macrophages have strong plasticity and the factors affecting the macrophages polarization are relatively complex, meanwhile, factors that positively regulate polarization to promote wound healing and factors that negatively regulate polarization or abnormal polarization to inhibit wound healing exist in the body simultaneously. Therefore, for studying the pathological mechanism of wound healing, it is important to understand and summarize the effect of different factors regulating macrophage polarization in chronic refractory wounds. Recent studies have shown that factors affecting the healing process of chronic refractory wounds include different colonization sites of macrophages, differences in inflammatory microenvironment, synergistic effect of stem cells, infection of pathogenic microorganisms, application of cellular biomaterials, macrophage autophagy and lipid metabolism disorders of macrophages, which are involved in regulating the polarization and metastasis of macrophages. Therefore, this article summarizes the mechanism of different factors regulating macrophage polarization in the process of chronic refractory wound healing, in order to provide ideas for the follow-up study of chronic refractory wounds.

[3]
Chistiakov DA, Myasoedova VA, Revin VV, et al. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2[J]. Immunobiology, 2018, 223(1): 101-111.
[4]
Chavez-Galan L, Olleros ML, Vesin D, et al. Much more than M1 and M2 macrophages, there are also CD169(+) and TCR(+) macrophages[J]. Front Immunol, 2015, 6: 263.
[5]
Burgess M, Wicks K, Gardasevic M, et al. Cx3CR1 expression identifies distinct macrophage populations that contribute differentially to inflammation and repair[J]. Immunohorizons, 2019, 3(7): 262-273.
[6]
Minutti CM, Knipper JA, Allen JE, et al. Tissue-specific contribution of macrophages to wound healing[J]. Semin Cell Dev Biol, 2017, 61: 3-11.
[7]
Kimball A, Schaller M, Joshi A, et al. Ly6C(Hi) blood monocyte/macrophage drive chronic inflammation and impair wound healing in diabetes mellitus[J]. Arterioscler Thromb Vasc Biol, 2018, 38(5): 1102-1114.
[8]
Rodero MP, Hodgson SS, Hollier B, et al. Reduced Il17a expression distinguishes a Ly6c(lo)MHCII(hi) macrophage population promoting wound healing[J]. J Invest Dermatol, 2013, 133(3): 783-792.
[9]
Chen H, Shi R, Luo B, et al. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice[J]. Cell Death Dis, 2015, 6(1): e1597.
[10]
Goren I, Müller E, Schiefelbein D, et al. Systemic anti-TNFalpha treatment restores diabetes-impaired skin repair in ob/ob mice by inactivation of macrophages[J]. J Invest Dermatol, 2007, 127(9): 2259-2267.
[11]
Wang Q, Zhu G, Cao X, et al. Blocking AGE-RAGE signaling improved functional disorders of macrophages in diabetic wound[J]. J Diabetes Res, 2017, 2017: 1428537.
[12]
Schultze JL, Schmieder A, Goerdt S. Macrophage activation in human diseases[J]. Semin Immunol, 2015, 27(4): 249-256.
[13]
Talamonti E, Pauter AM, Asadi A, et al. Impairment of systemic DHA synthesis affects macrophage plasticity and polarization: implications for DHA supplementation during inflammation[J]. Cell Mol Life Sci, 2017, 74(15): 2815-2826.
[14]
Jia YC, Qiu S, Xu J, et al. Docosahexaenoic acid improves diabetic wound healing in a rat model by restoring impaired plasticity of macrophage progenitor cells[J]. Plast Reconstr Surg, 2020, 145(5): 942e-950e.
[15]
Wilkinson HN, Clowes C, Banyard KL, et al. Elevated local senescence in diabetic wound healing is linked to pathological repair via CXCR2[J]. J Invest Dermatol, 2019, 139(5): 1171-1181.
[16]
山慧,张子锐,王晓莹,等. 去铁胺对深部组织损伤小鼠巨噬细胞极化和创面愈合的调节机制[J]. 中华烧伤与创面修复杂志2022, 38(8): 767-777.
[17]
王璐,顾建英,卫传元,等. 间充质干细胞诱导巨噬细胞极化促进创面愈合的研究进展[J]. 中华整形外科杂志2019, 35(12): 1275-1278.
[18]
石志远,张博涵,孙佳辰,等. 表皮干细胞在皮肤创面修复中的作用与机制研究进展[J]. 中华烧伤与创面修复杂志2022, 38(9): 854-858.
[1]
Powers JG, Higham C, Broussard K, et al. Wound healing and treating wounds: chronic wound care and management[J]. J Am Acad Dermatol, 2016, 74(4): 607-25.
[2]
Xu X, Gu S, Huang X, et al. The role of macrophages in the formation of hypertrophic scars and keloids[J]. Burns Trauma, 2020, 8: tkaa006.
[19]
Ahangar P, Mills SJ, Cowin AJ. Mesenchymal stem cell secretome as an emerging cell-free alternative for improving wound repair[J]. Int J Mol Sci, 2020, 21(19): 7038.
[20]
Uchiyama A, Motegi SI, Sekiguchi A, et al. Mesenchymal stem cells-derived MFG-E8 accelerates diabetic cutaneous wound healing[J]. J Dermatol Sci, 2017, 86(3): 187-197.
[21]
Németh K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production[J]. Nat Med, 2009, 15(1): 42-49.
[22]
Liu W, Yu M, Xie D, et al. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway[J]. Stem Cell Res Ther, 2020, 11(1): 259.
[23]
Wang P, Theocharidis G, Vlachos IS, et al. Exosomes derived from epidermal stem cells improve diabetic wound healing[J]. J Invest Dermatol, 2022, 142(9): 2508-2517. e13.
[24]
Li J, Wei C, Yang Y, et al. Apoptotic bodies extracted from adipose mesenchymal stem cells carry microRNA-21-5p to induce M2 polarization of macrophages and augment skin wound healing by targeting KLF6[J]. Burns, 2022, 48(8): 1893-1908.
[25]
He X, Dong Z, Cao Y, et al. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing[J]. Stem Cells Int, 2019, 2019: 7132708.
[26]
Lee JM, Govindarajah V, Goddard B, et al. Obesity alters the long-term fitness of the hematopoietic stem cell compartment through modulation of Gfi1 expression[J]. J Exp Med, 2018, 215(2): 627-644.
[27]
Chen S, Li R, Cheng C, et al. Pseudomonas aeruginosa infection alters the macrophage phenotype switching process during wound healing in diabetic mice[J]. Cell Biol Int, 2018, 42(7): 877-889.
[28]
Ramakant P, Verma AK, Misra R, et al. Changing microbiological profile of pathogenic bacteria in diabetic foot infections: time for a rethink on which empirical therapy to choose?[J]. Diabetologia, 2011, 54(1): 58-64.
[29]
Cavaillon JM. Exotoxins and endotoxins: Inducers of inflammatory cytokines[J]. Toxicon, 2018, 149: 45-53.
[30]
Goldufsky J, Wood SJ, Jayaraman V, et al. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing[J]. Wound Repair Regen, 2015, 23(4): 557-564.
[31]
Mariottoni P, Jiang SW, Prestwood CA, et al. Single-cell RNA sequencing reveals cellular and transcriptional changes associated with M1 macrophage polarization in hidradenitis suppurativa[J]. Front Med (Lausanne), 2021, 8: 665873.
[32]
Castro-Dopico T, Fleming A, Dennison TW, et al. GM-CSF calibrates macrophage defense and wound healing programs during intestinal infection and inflammation[J]. Cell Rep, 2020, 32(1): 107857.
[33]
Zhao H, Huang J, Li Y, et al. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds[J]. Biomaterials, 2020, 258: 120286.
[34]
Xu Z, Deng B, Wang X, et al. Nanofiber-mediated sequential photothermal antibacteria and macrophage polarization for healing MRSA-infected diabetic wounds[J]. J Nanobiotechnology, 2021, 19(1): 404.
[35]
Wu R X, Ma C, Liang Y, et al. ECM-mimicking nanofibrous matrix coaxes macrophages toward an anti-inflammatory phenotype: cellular behaviors and transcriptome analysis[J]. Appl Mater Today, 2020, 18: 100508.
[36]
Brouki Milan P, Pazouki A, Joghataei MT, et al. Decellularization and preservation of human skin: a platform for tissue engineering and reconstructive surgery[J]. Methods, 2020, 171: 62-67.
[37]
He C, Yang Z, Jin Y, et al. ADM scaffolds generate a pro-regenerative microenvironment during full-thickness cutaneous wound healing through M2 macrophage polarization via lamtor1[J]. Front Physiol, 2018, 9: 657.
[38]
Wu P, Liang Y, Sun G, et al. Engineering immune-responsive biomaterials for skin regeneration[J]. Biomater Transl, 2021, 2(1): 61-71.
[39]
Lazarus BS, Chadha C, Velasco-Hogan A, et al. Engineering with keratin: a functional material and a source of bioinspiration[J]. iScience, 2021, 24(8): 102798.
[40]
Waters M, Vandevord P, Van Dyke M. Keratin biomaterials augment anti-inflammatory macrophage phenotype in vitro[J]. Acta Biomater, 2018, 66: 213-223.
[41]
Qian Y, Zheng Y, Jin J, et al. Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold[J]. Adv Mater, 2022, 34(29): e2200521.
[42]
朱萌,陈禹州,区锦钊,等. 水溶性壳聚糖水凝胶对糖尿病小鼠感染全层皮肤缺损创面的作用及其机制[J]. 中华烧伤与创面修复杂志2022, 38(10): 923-931.
[43]
卢毅飞,邓君,王竞,等. 乳酸乳球菌温敏水凝胶对糖尿病小鼠全层皮肤缺损创面愈合的影响及其机制[J]. 中华烧伤杂志2020, 36(12): 1117-1129.
[44]
Zhao X, Pei D, Yang Y, et al. Green tea derivative driven smart hydrogels with desired functions for chronic diabetic wound treatment[J]. Adv Funct Mater, 2021, 31(18): 2009442.
[45]
Guo Y, Lin C, Xu P, et al. AGEs induced autophagy impairs cutaneous wound healing via stimulating macrophage polarization to M1 in diabetes[J]. Sci Rep, 2016, 6: 36416.
[46]
陈祺. 自噬活性对巨噬细胞极化与糖尿病小鼠创面愈合的影响[D]. 广州中医药大学,2019.
[47]
葛嘉媛. 巨噬细胞极化与自噬关系在糖尿病创面愈合中的影响研究[D]. 广州中医药大学,2020.
[48]
Feng X, Ji Y, Zhang C, et al. CCL6 promotes M2 polarization and inhibits macrophage autophagy by activating PI3-kinase/Akt signalling pathway during skin wound healing[J]. Exp Dermatol, 2023, 32(4): 403-412.
[49]
Ren H, Zhao F, Zhang Q, et al. Autophagy and skin wound healing[J]. Burns Trauma, 2022, 10: tkac003.
[50]
Kawano A, Ariyoshi W, Yoshioka Y, et al. Docosahexaenoic acid enhances M2 macrophage polarization via the p38 signaling pathway and autophagy[J]. J Cell Biochem, 2019, 120(8): 12604-12617.
[51]
Ji X, Jin P, Yu P, et al. Autophagy ameliorates pseudomonas aeruginosa-infected diabetic wounds by regulating the toll-like receptor 4/myeloid differentiation factor 88 pathway[J]. Wound Repair Regen, 2023, 31(3): 305-320.
[52]
Saitoh T, Akira S. Regulation of inflammasomes by autophagy[J]. J Allergy Clin Immunol, 2016, 138(1): 28-36.
[53]
Cao L, Wang Y, Wang Y, et al. Resolvin D2 suppresses NLRP3 inflammasome by promoting autophagy in macrophages[J]. Exp Ther Med, 2021, 22(5): 1222.
[54]
Cao Y, Chen J, Ren G, et al. Punicalagin prevents inflammation in LPS-induced RAW264. 7 macrophages by inhibiting FoxO3a/autophagy signaling pathway[J]. Nutrients, 2019, 11(11): 2794.
[55]
Takahama M, Akira S, Saitoh T. Autophagy limits activation of the inflammasomes[J]. Immunol Rev, 2018, 281(1): 62-73.
[56]
Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: a new target for fighting atherosclerosis and cardiovascular disease[J]. Vascul Pharmacol, 2019, 112: 54-71.
[57]
王鹏,尹斌,苏映军,等. 结核分枝杆菌介导泡沫细胞形成机制的研究进展[J]. 中华微生物学和免疫学杂志2020, 40(2): 154-159.
[58]
Orekhov AN, Nikiforov NG, Sukhorukov VN, et al. Role of phagocytosis in the pro-inflammatory response in LDL-induced foam cell formation; a transcriptome analysis[J]. Int J Mol Sci, 2020, 21(3): 817.
[59]
Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance[J]. Nat Rev Immunol, 2013, 13(10): 709-21.
[60]
Wang X, Cao K, Sun X, et al. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris[J]. Glia, 2015, 63(4): 635-651.
[61]
王鹏,尹斌,贾赤宇,等. 免疫荧光双重染色对临床结核性创面石蜡组织中泡沫细胞及结核分枝杆菌显示效果的比较分析[J]. 中华烧伤杂志2021, 37(2): 157-163.
[62]
Tamoutounour S, Guilliams M, Montanana Sanchis F, et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin[J]. Immunity, 2013, 39(5): 925-938.
[63]
Ahluwalia PK, Pandey RK, Sehajpal PK, et al. Perturbed microRNA expression by mycobacterium tuberculosis promotes macrophage polarization leading to pro-survival foam cell[J]. Front Immunol, 2017, 8: 107.
[64]
Bouhlel MA, Derudas B, Rigamonti E, et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties[J]. Cell Metab, 2007, 6(2): 137-143.
[65]
Konger RL, Derr-Yellin E, Zimmers TA, et al. Epidermal PPARγ is a key homeostatic regulator of cutaneous inflammation and barrier function in mouse skin[J]. Int J Mol Sci, 2021, 22(16): 8634.
[66]
Luo Y, Tanigawa K, Kawashima A, et al. The function of peroxisome proliferator-activated receptors PPAR-γ and PPAR-δ in Mycobacterium leprae-induced foam cell formation in host macrophages[J]. PLoS Negl Trop Dis, 2020, 14(10): e0008850.
[67]
Riahi Y, Kaiser N, Cohen G, et al. Foam cell-derived 4-hydroxynonenal induces endothelial cell senescence in a TXNIP-dependent manner[J]. J Cell Mol Med, 2015, 19(8): 1887-1899.
[68]
Chen X, Deng Z, Feng J, et al. Necroptosis in macrophage foam cells promotes fat graft fibrosis in mice[J]. Front Cell Dev Biol, 2021, 9: 651360.
[69]
Johansen MD, Hortle E, Kasparian JA, et al. Analysis of mycobacterial infection-induced changes to host lipid metabolism in a zebrafish infection model reveals a conserved role for LDLR in infection susceptibility[J]. Fish Shellfish Immunol, 2018, 83: 238-242.
[70]
Wang P, Yin B, Zhang Z, et al. Foamy macrophages potentially inhibit tuberculous wound healing by inhibiting the TLRs/NF-κB signalling pathway[J]. Wound Repair Regen, 2022, 30(3): 376-396.
[1] 高玲, 于哲, 范然, 臧银善. 外周血细胞计数比值评估类风湿关节炎疗效的价值[J]. 中华关节外科杂志(电子版), 2023, 17(05): 642-647.
[2] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[3] 王蓓蓓, 董启秀, 郗红燕, 于庆云, 张丽君, 式光. 早孕期孕妇药物流产失败的影响因素分析与构建相关预测模型及其对药物流产成功的预测价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 588-594.
[4] 李聪, 徐艳, 吴铭, 丁瑞东, 王军. 极低出生体重儿出生时血清25-羟维生素D水平与其生后早期喂养不耐受关系的临床分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 309-314.
[5] 赵金琦, 杨楠, 宫丽霏, 唐玥, 李璐璐, 杨海河, 孔元原. 2011—2020年北京市小于胎龄儿出生状况分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(03): 278-286.
[6] 陈川, 杨太珠, 何泽凤. 肾脏彩色多普勒超声结果对儿童重症医学科急性肾损伤患儿的辅助诊断价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 219-226.
[7] 吴晶晶, 胡倩, 李华凤. 围产期焦虑/抑郁与分娩疼痛相关性的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 156-161.
[8] 赵春桃, 梁峰雪, 杨瑞敏, 陈云璇, 陈曦, 焦桂清. 三维盆底超声预测产妇发生盆腔脏器脱垂的价值及影响因素[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 606-614.
[9] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[10] 甄子铂, 刘金虎. 基于列线图模型探究静脉全身麻醉腹腔镜胆囊切除术患者术后肠道功能紊乱的影响因素[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 61-65.
[11] 杨倩, 李翠芳, 张婉秋. 原发性肝癌自发性破裂出血急诊TACE术后的近远期预后及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 33-36.
[12] 黄汇, 朱信强. 131I治疗45岁以下分化型甲状腺癌的疗效及影响因素[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 627-630.
[13] 王小为, 雷海, 余书蓉, 缪世茜, 杨丽华. 乳腺癌患者术后远处转移及其不良结局的危险因素[J]. 中华普外科手术学杂志(电子版), 2022, 16(02): 162-165.
[14] 疏文志, 杨梦凡, 潘斌华, 苏仁义, 林祖源, 杨墨丹, 张镇胜, 宋一粟, 卢正阳, 郑树森, 徐骁, 魏绪勇. 人羊膜上皮干细胞通过调节M1/M2型巨噬细胞极化减轻小鼠肝脏缺血再灌注损伤的实验研究[J]. 中华移植杂志(电子版), 2023, 17(01): 36-41.
[15] 童飞, 蒋小燕, 朱秋萍. 人工髋关节置换术后个体化持续性干预方案的应用效果评价[J]. 中华卫生应急电子杂志, 2022, 08(05): 276-279.
阅读次数
全文


摘要