切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2024, Vol. 19 ›› Issue (01) : 78 -82. doi: 10.3877/cma.j.issn.1673-9450.2024.01.015

综述

抗菌肽在糖尿病创面愈合中作用的研究进展
冯蓉琴, 王鹏, 李煜, 陆翮, 白晓智, 韩军涛()   
  1. 710032 西安,空军军医大学第一附属医院全军烧伤中心烧伤与皮肤外科
  • 收稿日期:2023-11-11 出版日期:2024-02-01
  • 通信作者: 韩军涛

Research progress on the role of antimicrobial peptides in diabetic wound healing

Rongqin Feng, Peng Wang, Yu Li, He Lu, Xiaozhi Bai, Juntao Han()   

  1. Department of Burns and Cutaneous Surgery, Burn Center of People′s Liberation Army of China, First Affiliated Hospital of Air Force Medical University, Xi′an 710032, China
  • Received:2023-11-11 Published:2024-02-01
  • Corresponding author: Juntao Han
引用本文:

冯蓉琴, 王鹏, 李煜, 陆翮, 白晓智, 韩军涛. 抗菌肽在糖尿病创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 78-82.

Rongqin Feng, Peng Wang, Yu Li, He Lu, Xiaozhi Bai, Juntao Han. Research progress on the role of antimicrobial peptides in diabetic wound healing[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2024, 19(01): 78-82.

抗菌肽(AMPs)是存在于生物体内有抗菌活性的两亲性多肽。AMPs可通过参与调控创面的炎症反应,促进细胞增殖、迁移,促进新生血管生成及调控创面组织重塑等多种方式促进糖尿病创面愈合,现已逐渐成为创面愈合领域有广阔前景的一类药物。本文对AMPs的抗菌机制、促糖尿病创面愈合机制、基于创面愈合的AMPs优化设计进行综述,讨论开发有效的新型AMPs的未来前景。

Antimicrobial peptides (AMPs) are amphipathic peptides with antibacterial activity existing in organisms. AMPs can promote the healing of diabetic wounds by participating in regulating the inflammatory reaction of wounds, promoting cell proliferation, migration and angiogenesis, and regulating wound tissue remodeling, and has gradually become a promising drug in the field of wound healing. In this article, the antibacterial mechanism of AMPs, the mechanism of promoting diabetic wound healing and the current optimal design of AMPs on wound healing were reviewed and summarized, and the future prospect of developing effective new AMPs was discussed.

[1]
Atefyekta S, Blomstrand E, Rajasekharan AK, et al. Antimicrobial peptide-functionalized mesoporous hydrogels[J]. ACS Biomater Sci Eng, 2021, 7(4): 1693-1702.
[2]
Raileanu M, Borlan R, Campu A, et al. No country for old antibiotics! Antimicrobial peptides (AMPs) as next-generation treatment for skin and soft tissue infection[J]. Int J Pharm, 2023, 642: 123169.
[3]
Da SJ, Leal EC, Carvalho E. Bioactive antimicrobial peptides as therapeutic agents for infected diabetic foot ulcers[J]. Biomolecules, 2021, 11(12): 1894.
[4]
Lei J, Sun L, Huang S, et al. The antimicrobial peptides and their potential clinical applications[J]. Am J Transl Res, 2019, 11(7): 3919-3931.
[5]
Zasloff M. Antimicrobial peptides of multicellular organisms: my perspective[J]. Adv Exp Med Biol, 2019, 1117: 3-6.
[6]
Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: application informed by evolution[J]. Science, 2020, 368(6490): eaau5480.
[7]
Malekkhaiat HS, Nystrom L, Browning KL, et al. Interaction of laponite with membrane components-consequences for bacterial aggregation and infection confinement[J]. ACS Appl Mater Interfaces, 2019, 11(17): 15389-15400.
[8]
Farshadzadeh Z, Pourhajibagher M, Taheri B, et al. Antimicrobial and anti-biofilm potencies of dermcidin-derived peptide DCD-1L against Acinetobacter baumannii: an in vivo wound healing model[J]. BMC Microbiol, 2022, 22(1): 25.
[9]
Hassan M, Flanagan TW, Kharouf N, et al. Antimicrobial proteins: structure, molecular action, and therapeutic potential[J]. Pharmaceutics, 2022, 15(1): 72.
[10]
Lee MR, Raman N, Ortiz-Bermudez P, et al. 14-helical beta-peptides elicit toxicity against C. albicans by forming pores in the cell membrane and subsequently disrupting intracellular organelles[J]. Cell Chem Biol, 2019, 26(2): 289-299.
[11]
Gan BH, Gaynord J, Rowe SM, et al. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions[J]. Chem Soc Rev, 2021, 50(13): 7820-7880.
[12]
Aslam MZ, Firdos S, Li Z, et al. Detecting the mechanism of action of antimicrobial peptides by using microscopic detection techniques[J]. Foods, 2022, 11(18): 2809.
[13]
Yan Y, Li Y, Zhang Z, et al. Advances of peptides for antibacterial applications[J]. Colloids Surf B Biointerfaces, 2021, 202: 111682.
[14]
Santos FA, Cruz GS, Vieira FA, et al. Systematic review of antiprotozoal potential of antimicrobial peptides[J]. Acta Trop, 2022, 236: 106675.
[15]
Li X, Zuo S, Wang B, et al. Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides[J]. Molecules, 2022, 27(9): 2675.
[16]
Han X, Kou Z, Jiang F, et al. Interactions of designed trp-containing antimicrobial peptides with DNA of multidrug-resistant pseudomonas aeruginosa[J]. DNA Cell Biol, 2021, 40(2): 414-424.
[17]
Luo Y, Song Y. Mechanism of antimicrobial peptides: antimicrobial, anti-Inflammatory and antibiofilm activities[J]. Int J Mol Sci, 2021, 22(21): 11401.
[18]
Li G, Wang Q, Feng J, et al. Recent insights into the role of defensins in diabetic wound healing[J]. Biomed Pharmacother, 2022, 155: 113694.
[19]
He X, Yang Y, Mu L, et al. A frog-derived immunomodulatory peptide promotes cutaneous wound healing by regulating cellular response[J]. Front Immunol, 2019, 10: 2421.
[20]
Mouritzen MV, Petkovic M, Qvist K, et al. Improved diabetic wound healing by LFcinB is associated with relevant changes in the skin immune response and microbiota[J]. Mol Ther Methods Clin Dev, 2021, 20: 726-739.
[21]
Pena OM, Afacan N, Pistolic J, et al. Synthetic cationic peptide IDR-1018 modulates human macrophage differentiation[J]. PLoS One, 2013, 8(1): e52449.
[22]
Sebok C, Traj P, Mackei M, et al. Modulation of the immune response by the host defense peptide IDR-1002 in chicken hepatic cell culture[J]. Sci Rep, 2023, 13(1): 14530.
[23]
Sanapalli B, Yele V, Kalidhindi R, et al. Human beta defensins may be a multifactorial modulator in the management of diabetic wound[J]. Wound Repair Regen, 2020, 28(3): 416-421.
[24]
Cano SM, Lancel S, Boulanger E, et al. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review[J]. Antioxidants (Basel), 2018, 7(8): 98.
[25]
Chen Q, Li W, Wang J, et al. Lysozyme-antimicrobial peptide fusion protein promotes the diabetic wound size reduction in streptozotocin (STZ)-induced diabetic rats[J]. Med Sci Monit, 2018, 24: 8449-8458.
[26]
Fu S, Du C, Zhang Q, et al. A novel peptide from polypedates megacephalus promotes wound healing in mice[J]. Toxins (Basel), 2022, 14(11): 753.
[27]
Wang X, Duan H, Li M, et al. Characterization and mechanism of action of amphibian-derived wound-healing-promoting peptides[J]. Front Cell Dev Biol, 2023, 11: 1219427.
[28]
Yue H, Song P, Sutthammikorn N, et al. Antimicrobial peptide derived from insulin-like growth factor-binding protein 5 improves diabetic wound healing[J]. Wound Repair Regen, 2022, 30(2): 232-244.
[29]
Marin-Luevano P, Trujillo V, Rodriguez-Carlos A, et al. Induction by innate defence regulator peptide 1018 of pro-angiogenic molecules and endothelial cell migration in a high glucose environment[J]. Peptides, 2018, 101: 135-144.
[30]
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds[J]. Front Pharmacol, 2018, 9: 281.
[31]
Rodrigues M, Kosaric N, Bonham CA, et al. Wound healing: a cellular perspective[J]. Physiol Rev, 2019, 99(1): 665-706.
[32]
Shi Y, Li C, Wang M, et al. Cathelicidin-DM is an antimicrobial peptide from duttaphrynus melanostictus and has wound-healing therapeutic potential[J]. ACS Omega, 2020, 5(16): 9301-9310.
[33]
Takahashi M, Umehara Y, Yue H, et al. The antimicrobial peptide human beta-defensin-3 accelerates wound healing by promoting angiogenesis, cell migration, and proliferation through the FGFR/JAK2/STAT3 signaling pathway[J]. Front Immunol, 2021, 12: 712781.
[34]
Chessa C, Bodet C, Jousselin C, et al. Antiviral and immunomodulatory properties of antimicrobial peptides produced by human keratinocytes[J]. Front Microbiol, 2020, 11: 1155.
[35]
Chen L, Shen T, Liu Y, et al. Enhancing the antibacterial activity of antimicrobial peptide PMAP-37(F34-R) by cholesterol modification[J]. BMC Vet Res, 2020, 16(1): 419.
[36]
Lai Z, Yuan X, Chen H, et al. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability[J]. Biotechnol Adv, 2022, 59: 107962.
[37]
Di YP, Lin Q, Chen C, et al. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria[J]. Sci Adv, 2020, 6(18): eaay6817.
[38]
Luong HX, Thanh TT, Tran TH. Antimicrobial peptides - advances in development of therapeutic applications[J]. Life Sci, 2020, 260: 118407.
[39]
Han Y, Zhang M, Lai R, et al. Chemical modifications to increase the therapeutic potential of antimicrobial peptides[J]. Peptides, 2021, 146: 170666.
[40]
Cui Q, Xu QJ, Liu L, et al. Preparation, characterization and pharmacokinetic study of N-terminal PEGylated D-form antimicrobial peptide OM19r-8[J]. J Pharm Sci, 2021, 110(3): 1111-1119.
[41]
Rounds T, Straus SK. Lipidation of antimicrobial peptides as a design strategy for future alternatives to antibiotics[J]. Int J Mol Sci, 2020, 21(24): 9692.
[42]
Teng R, Yang Y, Zhang Z, et al. In situ enzyme-induced self-assembly of antimicrobial-antioxidative peptides to promote wound healing[J]. Adv Funct Mater, 2023, 33(23): 2214454-2214463.
[43]
Garcia-Orue I, Gainza G, Girbau C, et al. LL37 loaded nanostructured lipid carriers (NLC): a new strategy for the topical treatment of chronic wounds[J]. Eur J Pharm Biopharm, 2016, 108: 310-316.
[44]
Wei S, Xu P, Yao Z, et al. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes[J]. Acta Biomater, 2021, 124: 205-218.
[45]
Jeong SH, Cheong S, Kim TY, et al. Supramolecular hydrogels for precisely controlled antimicrobial peptide delivery for diabetic wound healing[J]. ACS Appl Mater Interfaces, 2023, 15(13): 16471-16481.
[46]
Luo X, Chen H, Song Y, et al. Advancements, challenges and future perspectives on peptide-based drugs: focus on antimicrobial peptides[J]. Eur J Pharm Sci, 2023, 181: 106363.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[3] 廖晓霜, 曾李, 杨波. 脱细胞同种异体真皮联合自体皮修复糖尿病足创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 46-50.
[4] 孙艺玮, 陈炜, 秦巍, 杜景辰, 孟昕, 周永军. 血管腔内介入治疗糖尿病足合并下肢动脉硬化闭塞症患者术后再狭窄与血清炎症因子的相关性[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 34-40.
[5] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[6] 王刚, 李涛, 刘玉芳. 胃癌根治手术后行抗菌药物治疗对患者肠道细菌移位及肠黏膜屏障功能的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 141-145.
[7] 赵帅, 王伟, 李瑞奇, 周家杰, 王道荣. 3D腹腔镜下袖状胃切除术治疗肥胖合并2型糖尿病的临床疗效及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 146-149.
[8] 刘盾, 潘晟. 不同入路腹腔镜袖状胃切除术用于肥胖症合并2型糖尿病的效果[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 150-154.
[9] 陈旭渊, 罗仕云, 李文忠, 李毅. 腺源性肛瘘经手术治疗后创面愈合困难的危险因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 82-85.
[10] 徐金林, 陈征. 抗菌药物临床应用监测对腹股沟疝修补术预防用药及感染的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 720-723.
[11] 汤天津, 于炎冰, 张黎. 周围神经电刺激的临床应用与研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 51-55.
[12] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[13] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[14] 邬秋俊, 向茜. 甘油三酯-葡萄糖指数与2型糖尿病微血管并发症相关性的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1109-1112.
[15] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(09): 1004-1009.
阅读次数
全文


摘要