切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2024, Vol. 19 ›› Issue (01) : 78 -82. doi: 10.3877/cma.j.issn.1673-9450.2024.01.015

综述

抗菌肽在糖尿病创面愈合中作用的研究进展
冯蓉琴, 王鹏, 李煜, 陆翮, 白晓智, 韩军涛()   
  1. 710032 西安,空军军医大学第一附属医院全军烧伤中心烧伤与皮肤外科
  • 收稿日期:2023-11-11 出版日期:2024-02-01
  • 通信作者: 韩军涛

Research progress on the role of antimicrobial peptides in diabetic wound healing

Rongqin Feng, Peng Wang, Yu Li, He Lu, Xiaozhi Bai, Juntao Han()   

  1. Department of Burns and Cutaneous Surgery, Burn Center of People′s Liberation Army of China, First Affiliated Hospital of Air Force Medical University, Xi′an 710032, China
  • Received:2023-11-11 Published:2024-02-01
  • Corresponding author: Juntao Han
引用本文:

冯蓉琴, 王鹏, 李煜, 陆翮, 白晓智, 韩军涛. 抗菌肽在糖尿病创面愈合中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 78-82.

Rongqin Feng, Peng Wang, Yu Li, He Lu, Xiaozhi Bai, Juntao Han. Research progress on the role of antimicrobial peptides in diabetic wound healing[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2024, 19(01): 78-82.

抗菌肽(AMPs)是存在于生物体内有抗菌活性的两亲性多肽。AMPs可通过参与调控创面的炎症反应,促进细胞增殖、迁移,促进新生血管生成及调控创面组织重塑等多种方式促进糖尿病创面愈合,现已逐渐成为创面愈合领域有广阔前景的一类药物。本文对AMPs的抗菌机制、促糖尿病创面愈合机制、基于创面愈合的AMPs优化设计进行综述,讨论开发有效的新型AMPs的未来前景。

Antimicrobial peptides (AMPs) are amphipathic peptides with antibacterial activity existing in organisms. AMPs can promote the healing of diabetic wounds by participating in regulating the inflammatory reaction of wounds, promoting cell proliferation, migration and angiogenesis, and regulating wound tissue remodeling, and has gradually become a promising drug in the field of wound healing. In this article, the antibacterial mechanism of AMPs, the mechanism of promoting diabetic wound healing and the current optimal design of AMPs on wound healing were reviewed and summarized, and the future prospect of developing effective new AMPs was discussed.

[1]
Atefyekta S, Blomstrand E, Rajasekharan AK, et al. Antimicrobial peptide-functionalized mesoporous hydrogels[J]. ACS Biomater Sci Eng, 2021, 7(4): 1693-1702.
[2]
Raileanu M, Borlan R, Campu A, et al. No country for old antibiotics! Antimicrobial peptides (AMPs) as next-generation treatment for skin and soft tissue infection[J]. Int J Pharm, 2023, 642: 123169.
[3]
Da SJ, Leal EC, Carvalho E. Bioactive antimicrobial peptides as therapeutic agents for infected diabetic foot ulcers[J]. Biomolecules, 2021, 11(12): 1894.
[4]
Lei J, Sun L, Huang S, et al. The antimicrobial peptides and their potential clinical applications[J]. Am J Transl Res, 2019, 11(7): 3919-3931.
[5]
Zasloff M. Antimicrobial peptides of multicellular organisms: my perspective[J]. Adv Exp Med Biol, 2019, 1117: 3-6.
[6]
Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: application informed by evolution[J]. Science, 2020, 368(6490): eaau5480.
[7]
Malekkhaiat HS, Nystrom L, Browning KL, et al. Interaction of laponite with membrane components-consequences for bacterial aggregation and infection confinement[J]. ACS Appl Mater Interfaces, 2019, 11(17): 15389-15400.
[8]
Farshadzadeh Z, Pourhajibagher M, Taheri B, et al. Antimicrobial and anti-biofilm potencies of dermcidin-derived peptide DCD-1L against Acinetobacter baumannii: an in vivo wound healing model[J]. BMC Microbiol, 2022, 22(1): 25.
[9]
Hassan M, Flanagan TW, Kharouf N, et al. Antimicrobial proteins: structure, molecular action, and therapeutic potential[J]. Pharmaceutics, 2022, 15(1): 72.
[10]
Lee MR, Raman N, Ortiz-Bermudez P, et al. 14-helical beta-peptides elicit toxicity against C. albicans by forming pores in the cell membrane and subsequently disrupting intracellular organelles[J]. Cell Chem Biol, 2019, 26(2): 289-299.
[11]
Gan BH, Gaynord J, Rowe SM, et al. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions[J]. Chem Soc Rev, 2021, 50(13): 7820-7880.
[12]
Aslam MZ, Firdos S, Li Z, et al. Detecting the mechanism of action of antimicrobial peptides by using microscopic detection techniques[J]. Foods, 2022, 11(18): 2809.
[13]
Yan Y, Li Y, Zhang Z, et al. Advances of peptides for antibacterial applications[J]. Colloids Surf B Biointerfaces, 2021, 202: 111682.
[14]
Santos FA, Cruz GS, Vieira FA, et al. Systematic review of antiprotozoal potential of antimicrobial peptides[J]. Acta Trop, 2022, 236: 106675.
[15]
Li X, Zuo S, Wang B, et al. Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides[J]. Molecules, 2022, 27(9): 2675.
[16]
Han X, Kou Z, Jiang F, et al. Interactions of designed trp-containing antimicrobial peptides with DNA of multidrug-resistant pseudomonas aeruginosa[J]. DNA Cell Biol, 2021, 40(2): 414-424.
[17]
Luo Y, Song Y. Mechanism of antimicrobial peptides: antimicrobial, anti-Inflammatory and antibiofilm activities[J]. Int J Mol Sci, 2021, 22(21): 11401.
[18]
Li G, Wang Q, Feng J, et al. Recent insights into the role of defensins in diabetic wound healing[J]. Biomed Pharmacother, 2022, 155: 113694.
[19]
He X, Yang Y, Mu L, et al. A frog-derived immunomodulatory peptide promotes cutaneous wound healing by regulating cellular response[J]. Front Immunol, 2019, 10: 2421.
[20]
Mouritzen MV, Petkovic M, Qvist K, et al. Improved diabetic wound healing by LFcinB is associated with relevant changes in the skin immune response and microbiota[J]. Mol Ther Methods Clin Dev, 2021, 20: 726-739.
[21]
Pena OM, Afacan N, Pistolic J, et al. Synthetic cationic peptide IDR-1018 modulates human macrophage differentiation[J]. PLoS One, 2013, 8(1): e52449.
[22]
Sebok C, Traj P, Mackei M, et al. Modulation of the immune response by the host defense peptide IDR-1002 in chicken hepatic cell culture[J]. Sci Rep, 2023, 13(1): 14530.
[23]
Sanapalli B, Yele V, Kalidhindi R, et al. Human beta defensins may be a multifactorial modulator in the management of diabetic wound[J]. Wound Repair Regen, 2020, 28(3): 416-421.
[24]
Cano SM, Lancel S, Boulanger E, et al. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review[J]. Antioxidants (Basel), 2018, 7(8): 98.
[25]
Chen Q, Li W, Wang J, et al. Lysozyme-antimicrobial peptide fusion protein promotes the diabetic wound size reduction in streptozotocin (STZ)-induced diabetic rats[J]. Med Sci Monit, 2018, 24: 8449-8458.
[26]
Fu S, Du C, Zhang Q, et al. A novel peptide from polypedates megacephalus promotes wound healing in mice[J]. Toxins (Basel), 2022, 14(11): 753.
[27]
Wang X, Duan H, Li M, et al. Characterization and mechanism of action of amphibian-derived wound-healing-promoting peptides[J]. Front Cell Dev Biol, 2023, 11: 1219427.
[28]
Yue H, Song P, Sutthammikorn N, et al. Antimicrobial peptide derived from insulin-like growth factor-binding protein 5 improves diabetic wound healing[J]. Wound Repair Regen, 2022, 30(2): 232-244.
[29]
Marin-Luevano P, Trujillo V, Rodriguez-Carlos A, et al. Induction by innate defence regulator peptide 1018 of pro-angiogenic molecules and endothelial cell migration in a high glucose environment[J]. Peptides, 2018, 101: 135-144.
[30]
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds[J]. Front Pharmacol, 2018, 9: 281.
[31]
Rodrigues M, Kosaric N, Bonham CA, et al. Wound healing: a cellular perspective[J]. Physiol Rev, 2019, 99(1): 665-706.
[32]
Shi Y, Li C, Wang M, et al. Cathelicidin-DM is an antimicrobial peptide from duttaphrynus melanostictus and has wound-healing therapeutic potential[J]. ACS Omega, 2020, 5(16): 9301-9310.
[33]
Takahashi M, Umehara Y, Yue H, et al. The antimicrobial peptide human beta-defensin-3 accelerates wound healing by promoting angiogenesis, cell migration, and proliferation through the FGFR/JAK2/STAT3 signaling pathway[J]. Front Immunol, 2021, 12: 712781.
[34]
Chessa C, Bodet C, Jousselin C, et al. Antiviral and immunomodulatory properties of antimicrobial peptides produced by human keratinocytes[J]. Front Microbiol, 2020, 11: 1155.
[35]
Chen L, Shen T, Liu Y, et al. Enhancing the antibacterial activity of antimicrobial peptide PMAP-37(F34-R) by cholesterol modification[J]. BMC Vet Res, 2020, 16(1): 419.
[36]
Lai Z, Yuan X, Chen H, et al. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability[J]. Biotechnol Adv, 2022, 59: 107962.
[37]
Di YP, Lin Q, Chen C, et al. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria[J]. Sci Adv, 2020, 6(18): eaay6817.
[38]
Luong HX, Thanh TT, Tran TH. Antimicrobial peptides - advances in development of therapeutic applications[J]. Life Sci, 2020, 260: 118407.
[39]
Han Y, Zhang M, Lai R, et al. Chemical modifications to increase the therapeutic potential of antimicrobial peptides[J]. Peptides, 2021, 146: 170666.
[40]
Cui Q, Xu QJ, Liu L, et al. Preparation, characterization and pharmacokinetic study of N-terminal PEGylated D-form antimicrobial peptide OM19r-8[J]. J Pharm Sci, 2021, 110(3): 1111-1119.
[41]
Rounds T, Straus SK. Lipidation of antimicrobial peptides as a design strategy for future alternatives to antibiotics[J]. Int J Mol Sci, 2020, 21(24): 9692.
[42]
Teng R, Yang Y, Zhang Z, et al. In situ enzyme-induced self-assembly of antimicrobial-antioxidative peptides to promote wound healing[J]. Adv Funct Mater, 2023, 33(23): 2214454-2214463.
[43]
Garcia-Orue I, Gainza G, Girbau C, et al. LL37 loaded nanostructured lipid carriers (NLC): a new strategy for the topical treatment of chronic wounds[J]. Eur J Pharm Biopharm, 2016, 108: 310-316.
[44]
Wei S, Xu P, Yao Z, et al. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes[J]. Acta Biomater, 2021, 124: 205-218.
[45]
Jeong SH, Cheong S, Kim TY, et al. Supramolecular hydrogels for precisely controlled antimicrobial peptide delivery for diabetic wound healing[J]. ACS Appl Mater Interfaces, 2023, 15(13): 16471-16481.
[46]
Luo X, Chen H, Song Y, et al. Advancements, challenges and future perspectives on peptide-based drugs: focus on antimicrobial peptides[J]. Eur J Pharm Sci, 2023, 181: 106363.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 李亚龙, 王星童, 申传安. 异体富血小板血浆在创面修复中的临床应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 541-545.
[3] 李煜, 王鹏, 陆翮, 冯蓉琴, 韩军涛. 采用低频脉冲电刺激治疗深Ⅱ度烧伤创面的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 474-478.
[4] 王杰, 袁泉, 王玥琦, 乔佳君, 谭春丽, 夏仲元, 刘守尧. 溃疡油在糖尿病足溃疡治疗中的应用效果及安全性观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 480-484.
[5] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[6] 王阅, 杨园梦, 何德亿, 孟雯, 陈昕煜, 李飞, 卢展民, 陆海霞. 基于口腔微生态的龋病防治研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 391-396.
[7] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[8] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[9] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[10] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[11] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[12] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[13] 李玺, 蔡芸莹, 张永红, 苏恒. 假性软骨发育不全合并1型糖尿病一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 518-520.
[14] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[15] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
阅读次数
全文


摘要