[1] |
Atefyekta S, Blomstrand E, Rajasekharan AK, et al. Antimicrobial peptide-functionalized mesoporous hydrogels[J]. ACS Biomater Sci Eng, 2021, 7(4): 1693-1702.
|
[2] |
Raileanu M, Borlan R, Campu A, et al. No country for old antibiotics! Antimicrobial peptides (AMPs) as next-generation treatment for skin and soft tissue infection[J]. Int J Pharm, 2023, 642: 123169.
|
[3] |
Da SJ, Leal EC, Carvalho E. Bioactive antimicrobial peptides as therapeutic agents for infected diabetic foot ulcers[J]. Biomolecules, 2021, 11(12): 1894.
|
[4] |
Lei J, Sun L, Huang S, et al. The antimicrobial peptides and their potential clinical applications[J]. Am J Transl Res, 2019, 11(7): 3919-3931.
|
[5] |
Zasloff M. Antimicrobial peptides of multicellular organisms: my perspective[J]. Adv Exp Med Biol, 2019, 1117: 3-6.
|
[6] |
Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: application informed by evolution[J]. Science, 2020, 368(6490): eaau5480.
|
[7] |
Malekkhaiat HS, Nystrom L, Browning KL, et al. Interaction of laponite with membrane components-consequences for bacterial aggregation and infection confinement[J]. ACS Appl Mater Interfaces, 2019, 11(17): 15389-15400.
|
[8] |
Farshadzadeh Z, Pourhajibagher M, Taheri B, et al. Antimicrobial and anti-biofilm potencies of dermcidin-derived peptide DCD-1L against Acinetobacter baumannii: an in vivo wound healing model[J]. BMC Microbiol, 2022, 22(1): 25.
|
[9] |
Hassan M, Flanagan TW, Kharouf N, et al. Antimicrobial proteins: structure, molecular action, and therapeutic potential[J]. Pharmaceutics, 2022, 15(1): 72.
|
[10] |
Lee MR, Raman N, Ortiz-Bermudez P, et al. 14-helical beta-peptides elicit toxicity against C. albicans by forming pores in the cell membrane and subsequently disrupting intracellular organelles[J]. Cell Chem Biol, 2019, 26(2): 289-299.
|
[11] |
Gan BH, Gaynord J, Rowe SM, et al. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions[J]. Chem Soc Rev, 2021, 50(13): 7820-7880.
|
[12] |
Aslam MZ, Firdos S, Li Z, et al. Detecting the mechanism of action of antimicrobial peptides by using microscopic detection techniques[J]. Foods, 2022, 11(18): 2809.
|
[13] |
Yan Y, Li Y, Zhang Z, et al. Advances of peptides for antibacterial applications[J]. Colloids Surf B Biointerfaces, 2021, 202: 111682.
|
[14] |
Santos FA, Cruz GS, Vieira FA, et al. Systematic review of antiprotozoal potential of antimicrobial peptides[J]. Acta Trop, 2022, 236: 106675.
|
[15] |
Li X, Zuo S, Wang B, et al. Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides[J]. Molecules, 2022, 27(9): 2675.
|
[16] |
Han X, Kou Z, Jiang F, et al. Interactions of designed trp-containing antimicrobial peptides with DNA of multidrug-resistant pseudomonas aeruginosa[J]. DNA Cell Biol, 2021, 40(2): 414-424.
|
[17] |
Luo Y, Song Y. Mechanism of antimicrobial peptides: antimicrobial, anti-Inflammatory and antibiofilm activities[J]. Int J Mol Sci, 2021, 22(21): 11401.
|
[18] |
Li G, Wang Q, Feng J, et al. Recent insights into the role of defensins in diabetic wound healing[J]. Biomed Pharmacother, 2022, 155: 113694.
|
[19] |
He X, Yang Y, Mu L, et al. A frog-derived immunomodulatory peptide promotes cutaneous wound healing by regulating cellular response[J]. Front Immunol, 2019, 10: 2421.
|
[20] |
Mouritzen MV, Petkovic M, Qvist K, et al. Improved diabetic wound healing by LFcinB is associated with relevant changes in the skin immune response and microbiota[J]. Mol Ther Methods Clin Dev, 2021, 20: 726-739.
|
[21] |
Pena OM, Afacan N, Pistolic J, et al. Synthetic cationic peptide IDR-1018 modulates human macrophage differentiation[J]. PLoS One, 2013, 8(1): e52449.
|
[22] |
Sebok C, Traj P, Mackei M, et al. Modulation of the immune response by the host defense peptide IDR-1002 in chicken hepatic cell culture[J]. Sci Rep, 2023, 13(1): 14530.
|
[23] |
Sanapalli B, Yele V, Kalidhindi R, et al. Human beta defensins may be a multifactorial modulator in the management of diabetic wound[J]. Wound Repair Regen, 2020, 28(3): 416-421.
|
[24] |
Cano SM, Lancel S, Boulanger E, et al. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review[J]. Antioxidants (Basel), 2018, 7(8): 98.
|
[25] |
Chen Q, Li W, Wang J, et al. Lysozyme-antimicrobial peptide fusion protein promotes the diabetic wound size reduction in streptozotocin (STZ)-induced diabetic rats[J]. Med Sci Monit, 2018, 24: 8449-8458.
|
[26] |
Fu S, Du C, Zhang Q, et al. A novel peptide from polypedates megacephalus promotes wound healing in mice[J]. Toxins (Basel), 2022, 14(11): 753.
|
[27] |
Wang X, Duan H, Li M, et al. Characterization and mechanism of action of amphibian-derived wound-healing-promoting peptides[J]. Front Cell Dev Biol, 2023, 11: 1219427.
|
[28] |
Yue H, Song P, Sutthammikorn N, et al. Antimicrobial peptide derived from insulin-like growth factor-binding protein 5 improves diabetic wound healing[J]. Wound Repair Regen, 2022, 30(2): 232-244.
|
[29] |
Marin-Luevano P, Trujillo V, Rodriguez-Carlos A, et al. Induction by innate defence regulator peptide 1018 of pro-angiogenic molecules and endothelial cell migration in a high glucose environment[J]. Peptides, 2018, 101: 135-144.
|
[30] |
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds[J]. Front Pharmacol, 2018, 9: 281.
|
[31] |
Rodrigues M, Kosaric N, Bonham CA, et al. Wound healing: a cellular perspective[J]. Physiol Rev, 2019, 99(1): 665-706.
|
[32] |
Shi Y, Li C, Wang M, et al. Cathelicidin-DM is an antimicrobial peptide from duttaphrynus melanostictus and has wound-healing therapeutic potential[J]. ACS Omega, 2020, 5(16): 9301-9310.
|
[33] |
Takahashi M, Umehara Y, Yue H, et al. The antimicrobial peptide human beta-defensin-3 accelerates wound healing by promoting angiogenesis, cell migration, and proliferation through the FGFR/JAK2/STAT3 signaling pathway[J]. Front Immunol, 2021, 12: 712781.
|
[34] |
Chessa C, Bodet C, Jousselin C, et al. Antiviral and immunomodulatory properties of antimicrobial peptides produced by human keratinocytes[J]. Front Microbiol, 2020, 11: 1155.
|
[35] |
Chen L, Shen T, Liu Y, et al. Enhancing the antibacterial activity of antimicrobial peptide PMAP-37(F34-R) by cholesterol modification[J]. BMC Vet Res, 2020, 16(1): 419.
|
[36] |
Lai Z, Yuan X, Chen H, et al. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability[J]. Biotechnol Adv, 2022, 59: 107962.
|
[37] |
Di YP, Lin Q, Chen C, et al. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria[J]. Sci Adv, 2020, 6(18): eaay6817.
|
[38] |
Luong HX, Thanh TT, Tran TH. Antimicrobial peptides - advances in development of therapeutic applications[J]. Life Sci, 2020, 260: 118407.
|
[39] |
Han Y, Zhang M, Lai R, et al. Chemical modifications to increase the therapeutic potential of antimicrobial peptides[J]. Peptides, 2021, 146: 170666.
|
[40] |
Cui Q, Xu QJ, Liu L, et al. Preparation, characterization and pharmacokinetic study of N-terminal PEGylated D-form antimicrobial peptide OM19r-8[J]. J Pharm Sci, 2021, 110(3): 1111-1119.
|
[41] |
Rounds T, Straus SK. Lipidation of antimicrobial peptides as a design strategy for future alternatives to antibiotics[J]. Int J Mol Sci, 2020, 21(24): 9692.
|
[42] |
Teng R, Yang Y, Zhang Z, et al. In situ enzyme-induced self-assembly of antimicrobial-antioxidative peptides to promote wound healing[J]. Adv Funct Mater, 2023, 33(23): 2214454-2214463.
|
[43] |
Garcia-Orue I, Gainza G, Girbau C, et al. LL37 loaded nanostructured lipid carriers (NLC): a new strategy for the topical treatment of chronic wounds[J]. Eur J Pharm Biopharm, 2016, 108: 310-316.
|
[44] |
Wei S, Xu P, Yao Z, et al. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes[J]. Acta Biomater, 2021, 124: 205-218.
|
[45] |
Jeong SH, Cheong S, Kim TY, et al. Supramolecular hydrogels for precisely controlled antimicrobial peptide delivery for diabetic wound healing[J]. ACS Appl Mater Interfaces, 2023, 15(13): 16471-16481.
|
[46] |
Luo X, Chen H, Song Y, et al. Advancements, challenges and future perspectives on peptide-based drugs: focus on antimicrobial peptides[J]. Eur J Pharm Sci, 2023, 181: 106363.
|