切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2024, Vol. 19 ›› Issue (02) : 180 -183. doi: 10.3877/cma.j.issn.1673-9450.2024.02.016

综述

YAP蛋白的亚细胞定位在瘢痕疙瘩发生中的作用
苏湘鹏1, 王晓1, 张基勋1, 王超1, 董欣欣1, 祁永军1, 刘振中1,()   
  1. 1. 250033 济南,山东大学第二医院整形烧伤外科
  • 收稿日期:2023-10-26 出版日期:2024-04-01
  • 通信作者: 刘振中
  • 基金资助:
    国家自然科学基金青年基金(82202454)

Role of subcellular localization of YAP protein in the development of keloids

Xiangpeng Su1, Xiao Wang1, Jixun Zhang1, Chao Wang1, Xinxin Dong1, Yongjun Qi1, Zhenzhong Liu1,()   

  1. 1. Department of Plastic and Burn Surgery, The Second Hospital, Shandong University, Ji′nan 250033, China
  • Received:2023-10-26 Published:2024-04-01
  • Corresponding author: Zhenzhong Liu
引用本文:

苏湘鹏, 王晓, 张基勋, 王超, 董欣欣, 祁永军, 刘振中. YAP蛋白的亚细胞定位在瘢痕疙瘩发生中的作用[J]. 中华损伤与修复杂志(电子版), 2024, 19(02): 180-183.

Xiangpeng Su, Xiao Wang, Jixun Zhang, Chao Wang, Xinxin Dong, Yongjun Qi, Zhenzhong Liu. Role of subcellular localization of YAP protein in the development of keloids[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2024, 19(02): 180-183.

瘢痕疙瘩主要是由于皮肤修复过程中出现异常纤维化,打破了细胞外基质合成与降解的平衡,使细胞外胶原过度沉积而形成。目前瘢痕疙瘩的治疗方式以包含手术切除、局部注射、激光、放射治疗的综合治疗为主,但仍有较高的复发率。探究瘢痕疙瘩发生发展的分子机制对瘢痕疙瘩的临床治疗有重要意义。Hippo通路可能是瘢痕疙瘩发生的重要通路之一。Hippo通路下游转录调节因子YAP蛋白的亚细胞定位同瘢痕疙瘩的发生发展存在一定联系。本文对瘢痕疙瘩发生过程中Hippo通路的作用及其机制进行综述,为瘢痕疙瘩的治疗提供一定的理论支持。

Keloids are formed mainly due to abnormal fibrosis during skin repair, which breaks the balance of extracellular matrix synthesis and degradation, and causes excessive deposition of extracellular collagen. At present, the treatment of keloids is mainly based on comprehensive treatment including surgical resection, local injection, laser and radiotherapy, but there is still a high recurrence rate. Exploring the molecular mechanism of keloid occurrence and development is of great significance for the clinical treatment of keloids. Hippo pathway may be one of the important pathways that cause keloids. The subcellular localization of YAP protein as a transcriptional regulator downstream of the Hippo pathway is related to the occurrence and development of keloids. In this article, the role and mechanism of the Hippo pathway during the occurrence of keloids were reviewed in order to provide some theoretical support for the treatment of keloids.

[1]
Ekstein SF, Wyles SP, Moran SL, et al. Keloids: a review of therapeutic management[J]. Int J Dermatol, 2021, 60(6): 661-671.
[2]
Delaleu J, Charvet E, Petit A. Keloid disease: review with clinical atlas. Part I: Definitions, history, epidemiology, clinics and diagnosis[J]. Ann Dermatol Venereol, 2023, 150(1): 3-15.
[3]
Barone N, Safran T, Vorstenbosch J, et al. Current advances in hypertrophic scar and keloid management[J]. Semin Plast Surg, 2021, 35(3): 145-152.
[4]
Chong Y, Park TH, Seo S, et al. Histomorphometric analysis of collagen architecture of auricular keloids in an Asian population[J]. Dermatol Surg, 2015, 41(3): 415-422.
[5]
臧梦青. 增生性瘢痕和瘢痕疙瘩的诊治现状[J]. 中华医学杂志2023, 103(7): 469-472.
[6]
Ogawa R, Dohi T, Tosa M, et al. The latest strategy for keloid and hypertrophic scar prevention and treatment: the nippon medical school (NMS) protocol[J]. J Nippon Med Sch, 2021, 88(1): 2-9.
[7]
Lee HJ, Jang YJ. Recent understandings of biology, prophylaxis and treatment strategies for hypertrophic scars and keloids[J]. Int J Mol Sci, 2018, 19(3):711.
[8]
Petrou IG, Nikou S, Madduri S, et al. The role of Hippo signaling pathway and ILK in the pathophysiology of human hypertrophic scars and keloids: an immunohistochemical investigation[J]. Cells, 2022, 11(21):3426.
[9]
Aramaki-Hattori N, Okabe K, Hamada M, et al. Relationship between keloid formation and YAP/TAZ signaling[J]. Plast Reconstr Surg Glob Open, 2017, 5(6): e1357.
[10]
Zhu N, Yang R, Wang X, et al. The Hippo signaling pathway: from multiple signals to the hallmarks of cancers[J]. Acta Biochim Biophys Sin (Shanghai), 2023, 55(6): 904-913.
[11]
Fu M, Hu Y, Lan T, et al. The Hippo signalling pathway and its implications in human health and diseases[J]. Signal Transduct Target Ther, 2022, 7(1): 376.
[12]
Plouffe SW, Lin KC, Moore JL, et al. The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell[J]. J Biol Chem, 2018, 293(28): 11230-11240.
[13]
Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal[J]. Nat Cell Biol, 2011, 13(8): 877-883.
[14]
Ma S, Meng Z, Chen R, et al. The Hippo pathway: biology and pathophysiology[J]. Annu Rev Biochem, 2019, 88: 577-604.
[15]
顾思佳,孙国壮,乔大伟,等. Hippo信号通路与结直肠癌[J]. 国际肿瘤学杂志2019(5): 299-302.
[16]
Kim CL, Choi SH, Mo JS. Role of the Hippo pathway in fibrosis and cancer[J]. Cells, 2019, 8(5):468.
[17]
Misra JR, Irvine KD. The Hippo signaling network and its biological functions[J]. Annu Rev Genet, 2018, 52: 65-87.
[18]
Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer[J]. Cancer Cell, 2016, 29(6): 783-803.
[19]
Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ[J]. Nat Rev Mol Cell Biol, 2012, 13(9): 591-600.
[20]
蔡甲慧,荣光宏. YAP在胃癌进展中的作用机制及临床意义[J]. 国际肿瘤学杂志2022(11): 687-691.
[21]
Donnes P, Hoglund A. Predicting protein subcellular localization: past, present, and future[J]. Genomics Proteomics Bioinformatics, 2004, 2(4): 209-215.
[22]
Kim J, Kwon H, Shin YK, et al. MAML1/2 promote YAP/TAZ nuclear localization and tumorigenesis[J]. Proc Natl Acad Sci U S A, 2020, 117(24): 13529-13540.
[23]
Lee MJ, Byun MR, Furutani-Seiki M, et al. YAP and TAZ regulate skin wound healing[J]. J Invest Dermatol, 2014, 134(2): 518-525.
[24]
Berry CE, Downer M, Morgan AG, et al. The effects of mechanical force on fibroblast behavior in cutaneous injury[J]. Front Surg, 2023, 10: 1167067.
[25]
Gao N, Lu L, Ma X, et al. Targeted inhibition of YAP/TAZ alters the biological behaviours of keloid fibroblasts[J]. Exp Dermatol, 2022, 31(3): 320-329.
[26]
Mia MM, Singh MK. New insights into Hippo/YAP signaling in fibrotic diseases[J]. Cells, 2022, 11(13):2065.
[27]
Huang J, Heng S, Zhang W, et al. Dermal extracellular matrix molecules in skin development, homeostasis, wound regeneration and diseases[J]. Semin Cell Dev Biol, 2022, 128: 137-144.
[28]
杨浠,王思瑶,郝林琳,等.细胞外基质:对肿瘤发展和治疗的生物学效应[J].肿瘤202141(11):792-802.
[29]
Ogawa R. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis[J]. Int J Mol Sci, 2017, 18(3):606.
[30]
Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction[J]. Nature, 2011, 474(7350): 179-183.
[31]
Dupont S. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction[J]. Exp Cell Res, 2016, 343(1): 42-53.
[32]
Morikawa M, Derynck R, Miyazono K. TGF-beta and the TGF-beta family: context-dependent roles in cell and tissue physiology[J]. Cold Spring Harb Perspect Biol, 2016, 8(5):a021873.
[33]
Andrews JP, Marttala J, Macarak E, et al. Keloids: the paradigm of skin fibrosis - Pathomechanisms and treatment[J]. Matrix Biol, 2016, 51: 37-46.
[34]
Piersma B, Bank RA, Boersema M. Signaling in fibrosis: TGF-beta, WNT, and YAP/TAZ converge[J]. Front Med (Lausanne), 2015, 2: 59.
[35]
Fujii M, Toyoda T, Nakanishi H, et al. TGF-beta synergizes with defects in the Hippo pathway to stimulate human malignant mesothelioma growth[J]. J Exp Med, 2012, 209(3): 479-494.
[36]
Qin Z, Xia W, Fisher GJ, et al. YAP/TAZ regulates TGF-beta/Smad3 signaling by induction of Smad7 via AP-1 in human skin dermal fibroblasts[J]. Cell Commun Signal, 2018, 16(1): 18.
[37]
伍倩,谭晓宇,王怡佳,等. Wnt/ β连环蛋白信号通路在体表创面愈合中的作用机制研究进展[J]. 中华烧伤与创面修复杂志2023, 39(2): 190-195.
[38]
Igota S, Tosa M, Murakami M, et al. Identification and characterization of Wnt signaling pathway in keloid pathogenesis[J]. Int J Med Sci, 2013, 10(4): 344-354.
[39]
Imajo M, Miyatake K, Iimura A, et al. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/beta-catenin signalling[J]. EMBO J, 2012, 31(5): 1109-1122.
[1] 高建松, 陈晓晓, 冯婷, 包剑锋, 魏淑芳, 潘林. 基于超声瞬时弹性成像的多参数决策树模型评估慢性乙型肝炎患者肝纤维化等级[J]. 中华医学超声杂志(电子版), 2023, 20(09): 923-929.
[2] 李安琪, 徐祎琳, 向天新. 新型冠状病毒感染后肺纤维化病变诊治进展[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 294-298.
[3] 范会业, 毛杨, 王文静, 李德峰. 大蒜素改善博莱霉素诱导小鼠肺纤维化的作用分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 9-13.
[4] 拉周措毛, 山春玲, 李国蓉, 华毛. 青海西宁地区IPF-LC的病理类型及临床特征分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 25-29.
[5] 张晶晶, 刘锦, 张玉华. 高流量无创呼吸湿化治疗仪对肺纤维化并发感染及氧分压的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 883-885.
[6] 陈向军, 顾兴, 王在强, 王光辉, 王莉, 方芳, 金发光, 王瑞璇. 颗粒酶B激活TGF-β1/Smad3通路促进博来霉素导致的肺纤维化[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 630-634.
[7] 许娟, 张党锋. 尼达尼布对肺纤维化小鼠肺功能及内质网应激反应的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 673-675.
[8] 谷先勇, 徐娟. 特发性肺纤维化合并T2DM炎症水平与预后相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 721-723.
[9] 李思佳, 苏晓乐, 王利华. 通过抑制Wnt/β-catenin信号通路延缓肾间质纤维化研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 224-228.
[10] 罗阳燕, 王少清, 高芳, 沈艳, 张万军, 李莉. 尿毒清颗粒对腹膜透析患者残余肾功能及腹透液纤连蛋白和TGF-β1水平的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 200-204.
[11] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[12] 江浩, 余宏圣, 杨碧兰, 阿布都克尤木·斯马依, 吴斌, 杨逸冬. 基于列线图模型对慢性乙型肝炎合并肝脏脂肪变性患者并发晚期肝纤维化的临床预测[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 114-120.
[13] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(09): 972-979.
[14] 姜晓宇, 付迪, 陈雪英, 申程, 甘立军. 胶原在心肌梗死后心脏重构中的研究进展[J]. 中华诊断学电子杂志, 2024, 12(01): 25-30.
[15] 张娜, 鲁志宏, 张盛军, 陈启众, 俞永涛, 陈申思, 钱海权, 刘轲. 腹腔镜袖状胃切除术治疗肥胖合并非酒精性脂肪肝患者肝纤维化的短期疗效分析[J]. 中华肥胖与代谢病电子杂志, 2023, 09(04): 261-266.
阅读次数
全文


摘要