切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2024, Vol. 19 ›› Issue (02) : 176 -179. doi: 10.3877/cma.j.issn.1673-9450.2024.02.015

综述

成纤维细胞重编程与创面修复的研究进展
刘高雨1, 罗鹏1, 史春梦1,()   
  1. 1. 400038 重庆,陆军军医大学火箭军医学教研室
  • 收稿日期:2023-06-09 出版日期:2024-04-01
  • 通信作者: 史春梦
  • 基金资助:
    国家自然科学基金重点项目(82030056); 国家自然科学基金青年科学基金项目(82102341)

Research progress of fibroblast reprogramming and wound repair

Gaoyu Liu1, Peng Luo1, Chunmeng Shi1,()   

  1. 1. Department of Military Rocket Army Medical Teaching and Research, Army Medical University, Chongqing 400038, China
  • Received:2023-06-09 Published:2024-04-01
  • Corresponding author: Chunmeng Shi
引用本文:

刘高雨, 罗鹏, 史春梦. 成纤维细胞重编程与创面修复的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(02): 176-179.

Gaoyu Liu, Peng Luo, Chunmeng Shi. Research progress of fibroblast reprogramming and wound repair[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2024, 19(02): 176-179.

皮肤创面是最常见的临床病症之一,其修复结局包括再生性修复和纤维化修复。纤维化修复作为成体组织器官最主要的修复形式,不仅会导致组织器官功能障碍,影响美观和身心健康,还加重了医疗经济负担。在创面修复中,如何抑制纤维化修复和促进再生性修复,进一步保持受伤皮肤的完整性和功能性一直是难题。近年来,干细胞和重编程技术的发展为再生领域带来了概念性的革新。其中,成纤维细胞的重编程为难愈性创面的再生修复提供了新的技术支持。本文将概述皮肤成纤维细胞的生物学特点,并重点综述成纤维细胞的重编程在创面修复中的研究进展。

Skin wound is one of the most common clinical diseases, and the outcome of wound healing includes regenerative repair and fibrosis repair. As the leading form of adult tissue and organ repair, fibrosis repair, also known as scar repair, will not only lead to tissue and organ dysfunction of patients, affect the appearance and physical and mental health, but also increase the medical and economic burden of the country. Therefore, how to inhibit fibrosis repair and promote regenerative repairin wound healing, so as to further maintain the integrity and function of the injured skin has been a major problem of medicine. In recent years, the development of stem cells and reprogramming techniques has brought conceptual innovation to regenerative medicine. And fibroblast reprogramming provides a new technical support for regenerative repair of large area burn and severe trauma. In this paper, the biological characteristics of skin fibroblasts are summarized, and the recent research progress of fibroblast reprogramming in wound repair is reviewed.

[1]
Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314-321.
[2]
Coentro JQ, Pugliese E, Hanley G, et al. Current and upcoming therapies to modulate skin scarring and fibrosis[J]. Adv Drug Deliv Rev, 2019, 146: 37-59.
[3]
Plikus MV, Guerrero-Juarez CF, Ito M, et al. Regeneration of fat cells from myofibroblasts during wound healing[J]. Science, 2017, 355(6326): 748-752.
[4]
Wang H, Yang Y, Liu J, et al. Direct cell reprogramming: approaches, mechanisms and progress[J]. Nat Rev Mol Cell Biol, 2021, 22(6): 410-424.
[5]
Tani H, Sadahiro T, Yamada Y, et al. Direct reprogramming improves cardiac function and reverses fibrosis in chronic myocardial infarction[J]. Circulation, 2023, 147(3): 223-238.
[6]
Mascharak S, desJardins-Park HE, Davitt MF, et al. Preventing engrailed-1 activation in fibroblasts yields wound regeneration without scarring[J]. Science, 2021, 372(6540): eaba2374.
[7]
Sandri G, Aguzzi C, Rossi S, et al. Halloysite and chitosan oligosaccharide nanocomposite for wound healing[J]. Acta Biomater, 2017, 57: 216-224.
[8]
刘雪婷,白春雨,关伟军,等. 表皮干细胞的生物学特性及其潜在应用[J]. 生物技术通报2016 (1): 29-32.
[9]
李彬彬,孙培鸣,孙宏伟,等. 表皮干细胞研究进展[J]. 医学研究杂志2021, 50(1): 156-159.
[10]
Kurita M, Araoka T, Hishida T, et al. In vivo reprogramming of wound-resident cells generates skin epithelial tissue[J]. Nature, 2018, 561(7722): 243-247.
[11]
Yang R, Zheng Y, Burrows M, et al. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells[J]. Nat Commun, 2014, 5: 3071.
[12]
Sun X, Xiang J, Chen R, et al. Sweat gland organoids originating from reprogrammed epidermal keratinocytes functionally recapitulated damaged skin[J]. Adv Sci (Weinh), 2021, 8(22): e2103079.
[13]
Ji SF, Zhou LX, Sun ZF, et al. Small molecules facilitate single factor-mediated sweat gland cell reprogramming[J]. Mil Med Res, 2022, 9(1): 13.
[14]
Guan J, Wang G, Wang J, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells[J]. Nature, 2022, 605(7909): 325-331.
[15]
Allanki S, Strilic B, Scheinberger L, et al. Interleukin-11 signaling promotes cellular reprogramming and limits fibrotic scarring during tissue regeneration[J]. Sci Adv, 2021, 7(37): eabg6497.
[16]
Mazini L, Rochette L, Admou B, et al. Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in Wound Healing[J]. Int J Mol Sci, 2020, 21(4): 1306.
[17]
杨玲玲,黄悦,王洪一,等. 脂肪干细胞抑制炎症对缓解兔耳增生性瘢痕形成效果研究[J]. 临床军医杂志2022, 50(5): 503-506, 509.
[18]
Kim WS, Park BS, Sung JH, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts[J]. J Dermatol Sci, 2007, 48(1): 15-24.
[19]
Nambu M, Kishimoto S, Nakamura S, et al. Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix[J]. Ann Plast Surg, 2009, 62(3): 317-321.
[20]
Jeong JH. Adipose stem cells and skin repair[J]. Curr Stem Cell Res Ther, 2010, 5(2): 137-140.
[21]
Shao Y, Chen QZ, Zeng YH, et al. All-trans retinoic acid shifts rosiglitazone-induced adipogenic differentiation to osteogenic differentiation in mouse embryonic fibroblasts[J]. Int J Mol Med, 2016, 38(6): 1693-1702.
[22]
Zhang LJ, Guerrero-Juarez CF, Hata T, et al. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection[J]. Science, 2015, 347(6217): 67-71.
[23]
Franz A, Wood W, Martin P. Fat body cells are motile and actively migrate to wounds to drive Repair and Prevent Infection[J]. Dev Cell, 2018, 44(4): 460-470.e3.
[24]
Kwon HH, Yang SH, Lee J, et al. Combination treatment with human adipose tissue stem cell-derived exosomes and fractional CO2 laser for acne scars: a 12-week prospective, double-blind, randomized, split-face study[J]. Acta Derm Venereol, 2020, 100(18): adv00310.
[25]
谭景铭,周胤朴. 脂肪干细胞外泌体应用于瘢痕治疗的研究进展[J]. 医学研究生学报2022, 35(6): 668-672.
[26]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676.
[27]
Li D, Shu X, Zhu P, et al. Chromatin accessibility dynamics during cell fate reprogramming[J]. EMBO Rep, 2021, 22(2): e51644.
[28]
Xie X, Jankauskas R, Mazari AMA, et al. beta-actin regulates a heterochromatin landscape essential for optimal induction of neuronal programs during direct reprograming[J]. PLoS Genet, 2018, 14(12): e1007846.
[29]
Balmer P, Hariton WVJ, Sayar BS, et al. SUV39H2 epigenetic silencing controls fate conversion of epidermal stem and progenitor cells[J]. J Cell Biol, 2021, 220(4): e201908178.
[30]
Adachi K, Kopp W, Wu G, et al. Esrrb unlocks silenced enhancers for reprogramming to naive pluripotency[J]. Cell Stem Cell, 2018, 23(2): 266-275.e6.
[31]
Hernandez C, Wang Z, Ramazanov B, et al. Dppa2/4 facilitate epigenetic remodeling during reprogramming to pluripotency[J]. Cell Stem Cell, 2018, 23(3): 396-411.e8.
[32]
Pastor WA, Liu W, Chen D, et al. TFAP2C regulates transcription in human naive pluripotency by opening enhancers[J]. Nat Cell Biol, 2018, 20(5): 553-564.
[33]
Gorecka J, Kostiuk V, Fereydooni A, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing[J]. Stem Cell Res Ther, 2019, 10(1): 87.
[34]
Judson RL, Babiarz JE, Venere M, et al. Embryonic stem cell-specific microRNAs promote induced pluripotency[J]. Nat Biotechnol, 2009, 27(5): 459-461.
[35]
Oshima H, Rochat A, Kedzia C, et al. Morphogenesis and renewal of hair follicles from adult multipotent stem cells[J]. Cell, 2001, 104(2): 233-245.
[36]
Zhang J, Guan J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis[J]. J Transl Med, 2015, 13: 49.
[37]
Dash BC, Korutla L, Vallabhajosyula P, et al. Unlocking the potential of induced pluripotent stem cells for wound healing: the next frontier of regenerative medicine[J]. Adv Wound Care (New Rochelle), 2022, 11(11): 622-638.
[38]
Doeser MC, Scholer HR, Wu G. Reduction of fibrosis and scar formation by partial reprogramming in vivo[J]. Stem Cells, 2018, 36(8): 1216-1225.
[39]
Clayton ZE, Tan RP, Miravet MM, et al. Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model[J]. Biosci Rep, 2018, 38(4):BSR20180563.
[40]
Wu R, Du D, Bo Y, et al. Hsp90alpha promotes the migration of iPSCs-derived keratinocyte to accelerate deep second-degree burn wound healing in mice[J]. Biochem Biophys Res Commun, 2019, 520(1): 145-151.
[41]
Yan Y, Jiang J, Zhang M, et al. Effect of iPSCs-derived keratinocytes on healing of full-thickness skin wounds in mice[J]. Exp Cell Res, 2019, 385(1): 111627.
[42]
Gill D, Parry A, Santos F, et al. Multi-omic rejuvenation of human cells by maturation phase transient reprogramming[J]. Elife, 2022, 11: e71624.
[43]
Sacco AM, Belviso I, Romano V, et al. Diversity of dermal fibroblasts as major determinant of variability in cell reprogramming[J]. J Cell Mol Med, 2019, 23(6): 4256-4268.
[44]
Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors[J]. Science, 2008, 322(5903): 949-953.
[45]
Romanazzo S, Lin K, Srivastava P, et al. Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming[J]. Adv Drug Deliv Rev, 2020, 161-162: 124-144.
[1] 蒲卢兰, 李静佳, 陈宇, 周瑜清, 荣欣欣, 侯令密, 周方方. NF2/YAP信号通路通过FSP1诱导CD24高表达的三阴性乳腺癌细胞铁死亡[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 206-211.
[2] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[3] 李亚龙, 王星童, 申传安. 异体富血小板血浆在创面修复中的临床应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 541-545.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 李煜, 王鹏, 陆翮, 冯蓉琴, 韩军涛. 采用低频脉冲电刺激治疗深Ⅱ度烧伤创面的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 474-478.
[6] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[7] 周清洁, 蒋萍萍, 梁云, 李琰. 脂质水胶体技术在创面愈合中的应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 360-363.
[8] 冯蓉琴, 王鹏, 李煜, 陆翮, 白晓智, 韩军涛. 抗菌肽在糖尿病创面愈合中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 78-82.
[9] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[10] 何雪锋, 赵世新, 李珮珊, 刘恒登, 谢举临. 卡奴卡叶提取物通过增强真皮成纤维细胞功能促进大鼠创面修复的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(05): 405-412.
[11] 陈旭渊, 罗仕云, 李文忠, 李毅. 腺源性肛瘘经手术治疗后创面愈合困难的危险因素分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 82-85.
[12] 李卓骋, 陈羽翔, 高亮, 张宇, 朱许源, 马晓杰, 李涛, 赵甜甜, 蒋鸿涛. 巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 181-185.
[13] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[14] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[15] 徐立, 阎岩. aFGF修饰自体成纤维细胞治疗食管吻合口瘘的实验研究[J/OL]. 中华胸部外科电子杂志, 2024, 11(03): 180-187.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?