切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2024, Vol. 19 ›› Issue (02) : 176 -179. doi: 10.3877/cma.j.issn.1673-9450.2024.02.015

综述

成纤维细胞重编程与创面修复的研究进展
刘高雨1, 罗鹏1, 史春梦1,()   
  1. 1. 400038 重庆,陆军军医大学火箭军医学教研室
  • 收稿日期:2023-06-09 出版日期:2024-04-01
  • 通信作者: 史春梦
  • 基金资助:
    国家自然科学基金重点项目(82030056); 国家自然科学基金青年科学基金项目(82102341)

Research progress of fibroblast reprogramming and wound repair

Gaoyu Liu1, Peng Luo1, Chunmeng Shi1,()   

  1. 1. Department of Military Rocket Army Medical Teaching and Research, Army Medical University, Chongqing 400038, China
  • Received:2023-06-09 Published:2024-04-01
  • Corresponding author: Chunmeng Shi
引用本文:

刘高雨, 罗鹏, 史春梦. 成纤维细胞重编程与创面修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(02): 176-179.

Gaoyu Liu, Peng Luo, Chunmeng Shi. Research progress of fibroblast reprogramming and wound repair[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2024, 19(02): 176-179.

皮肤创面是最常见的临床病症之一,其修复结局包括再生性修复和纤维化修复。纤维化修复作为成体组织器官最主要的修复形式,不仅会导致组织器官功能障碍,影响美观和身心健康,还加重了医疗经济负担。在创面修复中,如何抑制纤维化修复和促进再生性修复,进一步保持受伤皮肤的完整性和功能性一直是难题。近年来,干细胞和重编程技术的发展为再生领域带来了概念性的革新。其中,成纤维细胞的重编程为难愈性创面的再生修复提供了新的技术支持。本文将概述皮肤成纤维细胞的生物学特点,并重点综述成纤维细胞的重编程在创面修复中的研究进展。

Skin wound is one of the most common clinical diseases, and the outcome of wound healing includes regenerative repair and fibrosis repair. As the leading form of adult tissue and organ repair, fibrosis repair, also known as scar repair, will not only lead to tissue and organ dysfunction of patients, affect the appearance and physical and mental health, but also increase the medical and economic burden of the country. Therefore, how to inhibit fibrosis repair and promote regenerative repairin wound healing, so as to further maintain the integrity and function of the injured skin has been a major problem of medicine. In recent years, the development of stem cells and reprogramming techniques has brought conceptual innovation to regenerative medicine. And fibroblast reprogramming provides a new technical support for regenerative repair of large area burn and severe trauma. In this paper, the biological characteristics of skin fibroblasts are summarized, and the recent research progress of fibroblast reprogramming in wound repair is reviewed.

[1]
Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314-321.
[2]
Coentro JQ, Pugliese E, Hanley G, et al. Current and upcoming therapies to modulate skin scarring and fibrosis[J]. Adv Drug Deliv Rev, 2019, 146: 37-59.
[3]
Plikus MV, Guerrero-Juarez CF, Ito M, et al. Regeneration of fat cells from myofibroblasts during wound healing[J]. Science, 2017, 355(6326): 748-752.
[4]
Wang H, Yang Y, Liu J, et al. Direct cell reprogramming: approaches, mechanisms and progress[J]. Nat Rev Mol Cell Biol, 2021, 22(6): 410-424.
[5]
Tani H, Sadahiro T, Yamada Y, et al. Direct reprogramming improves cardiac function and reverses fibrosis in chronic myocardial infarction[J]. Circulation, 2023, 147(3): 223-238.
[6]
Mascharak S, desJardins-Park HE, Davitt MF, et al. Preventing engrailed-1 activation in fibroblasts yields wound regeneration without scarring[J]. Science, 2021, 372(6540): eaba2374.
[7]
Sandri G, Aguzzi C, Rossi S, et al. Halloysite and chitosan oligosaccharide nanocomposite for wound healing[J]. Acta Biomater, 2017, 57: 216-224.
[8]
刘雪婷,白春雨,关伟军,等. 表皮干细胞的生物学特性及其潜在应用[J]. 生物技术通报2016 (1): 29-32.
[9]
李彬彬,孙培鸣,孙宏伟,等. 表皮干细胞研究进展[J]. 医学研究杂志2021, 50(1): 156-159.
[10]
Kurita M, Araoka T, Hishida T, et al. In vivo reprogramming of wound-resident cells generates skin epithelial tissue[J]. Nature, 2018, 561(7722): 243-247.
[11]
Yang R, Zheng Y, Burrows M, et al. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells[J]. Nat Commun, 2014, 5: 3071.
[12]
Sun X, Xiang J, Chen R, et al. Sweat gland organoids originating from reprogrammed epidermal keratinocytes functionally recapitulated damaged skin[J]. Adv Sci (Weinh), 2021, 8(22): e2103079.
[13]
Ji SF, Zhou LX, Sun ZF, et al. Small molecules facilitate single factor-mediated sweat gland cell reprogramming[J]. Mil Med Res, 2022, 9(1): 13.
[14]
Guan J, Wang G, Wang J, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells[J]. Nature, 2022, 605(7909): 325-331.
[15]
Allanki S, Strilic B, Scheinberger L, et al. Interleukin-11 signaling promotes cellular reprogramming and limits fibrotic scarring during tissue regeneration[J]. Sci Adv, 2021, 7(37): eabg6497.
[16]
Mazini L, Rochette L, Admou B, et al. Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in Wound Healing[J]. Int J Mol Sci, 2020, 21(4): 1306.
[17]
杨玲玲,黄悦,王洪一,等. 脂肪干细胞抑制炎症对缓解兔耳增生性瘢痕形成效果研究[J]. 临床军医杂志2022, 50(5): 503-506, 509.
[18]
Kim WS, Park BS, Sung JH, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts[J]. J Dermatol Sci, 2007, 48(1): 15-24.
[19]
Nambu M, Kishimoto S, Nakamura S, et al. Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix[J]. Ann Plast Surg, 2009, 62(3): 317-321.
[20]
Jeong JH. Adipose stem cells and skin repair[J]. Curr Stem Cell Res Ther, 2010, 5(2): 137-140.
[21]
Shao Y, Chen QZ, Zeng YH, et al. All-trans retinoic acid shifts rosiglitazone-induced adipogenic differentiation to osteogenic differentiation in mouse embryonic fibroblasts[J]. Int J Mol Med, 2016, 38(6): 1693-1702.
[22]
Zhang LJ, Guerrero-Juarez CF, Hata T, et al. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection[J]. Science, 2015, 347(6217): 67-71.
[23]
Franz A, Wood W, Martin P. Fat body cells are motile and actively migrate to wounds to drive Repair and Prevent Infection[J]. Dev Cell, 2018, 44(4): 460-470.e3.
[24]
Kwon HH, Yang SH, Lee J, et al. Combination treatment with human adipose tissue stem cell-derived exosomes and fractional CO2 laser for acne scars: a 12-week prospective, double-blind, randomized, split-face study[J]. Acta Derm Venereol, 2020, 100(18): adv00310.
[25]
谭景铭,周胤朴. 脂肪干细胞外泌体应用于瘢痕治疗的研究进展[J]. 医学研究生学报2022, 35(6): 668-672.
[26]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676.
[27]
Li D, Shu X, Zhu P, et al. Chromatin accessibility dynamics during cell fate reprogramming[J]. EMBO Rep, 2021, 22(2): e51644.
[28]
Xie X, Jankauskas R, Mazari AMA, et al. beta-actin regulates a heterochromatin landscape essential for optimal induction of neuronal programs during direct reprograming[J]. PLoS Genet, 2018, 14(12): e1007846.
[29]
Balmer P, Hariton WVJ, Sayar BS, et al. SUV39H2 epigenetic silencing controls fate conversion of epidermal stem and progenitor cells[J]. J Cell Biol, 2021, 220(4): e201908178.
[30]
Adachi K, Kopp W, Wu G, et al. Esrrb unlocks silenced enhancers for reprogramming to naive pluripotency[J]. Cell Stem Cell, 2018, 23(2): 266-275.e6.
[31]
Hernandez C, Wang Z, Ramazanov B, et al. Dppa2/4 facilitate epigenetic remodeling during reprogramming to pluripotency[J]. Cell Stem Cell, 2018, 23(3): 396-411.e8.
[32]
Pastor WA, Liu W, Chen D, et al. TFAP2C regulates transcription in human naive pluripotency by opening enhancers[J]. Nat Cell Biol, 2018, 20(5): 553-564.
[33]
Gorecka J, Kostiuk V, Fereydooni A, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing[J]. Stem Cell Res Ther, 2019, 10(1): 87.
[34]
Judson RL, Babiarz JE, Venere M, et al. Embryonic stem cell-specific microRNAs promote induced pluripotency[J]. Nat Biotechnol, 2009, 27(5): 459-461.
[35]
Oshima H, Rochat A, Kedzia C, et al. Morphogenesis and renewal of hair follicles from adult multipotent stem cells[J]. Cell, 2001, 104(2): 233-245.
[36]
Zhang J, Guan J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis[J]. J Transl Med, 2015, 13: 49.
[37]
Dash BC, Korutla L, Vallabhajosyula P, et al. Unlocking the potential of induced pluripotent stem cells for wound healing: the next frontier of regenerative medicine[J]. Adv Wound Care (New Rochelle), 2022, 11(11): 622-638.
[38]
Doeser MC, Scholer HR, Wu G. Reduction of fibrosis and scar formation by partial reprogramming in vivo[J]. Stem Cells, 2018, 36(8): 1216-1225.
[39]
Clayton ZE, Tan RP, Miravet MM, et al. Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model[J]. Biosci Rep, 2018, 38(4):BSR20180563.
[40]
Wu R, Du D, Bo Y, et al. Hsp90alpha promotes the migration of iPSCs-derived keratinocyte to accelerate deep second-degree burn wound healing in mice[J]. Biochem Biophys Res Commun, 2019, 520(1): 145-151.
[41]
Yan Y, Jiang J, Zhang M, et al. Effect of iPSCs-derived keratinocytes on healing of full-thickness skin wounds in mice[J]. Exp Cell Res, 2019, 385(1): 111627.
[42]
Gill D, Parry A, Santos F, et al. Multi-omic rejuvenation of human cells by maturation phase transient reprogramming[J]. Elife, 2022, 11: e71624.
[43]
Sacco AM, Belviso I, Romano V, et al. Diversity of dermal fibroblasts as major determinant of variability in cell reprogramming[J]. J Cell Mol Med, 2019, 23(6): 4256-4268.
[44]
Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors[J]. Science, 2008, 322(5903): 949-953.
[45]
Romanazzo S, Lin K, Srivastava P, et al. Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming[J]. Adv Drug Deliv Rev, 2020, 161-162: 124-144.
[1] 陈玲, 李楠, 杨建乐. 微小RNA-377-3p调控自噬改善脂多糖/D-半乳糖胺诱导的急性肝衰竭的机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(02): 89-97.
[2] 李敏, 杨凡. 肌细胞因子在儿童肥胖症患儿运动减脂中的作用研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 125-131.
[3] 冯蓉琴, 王鹏, 李煜, 陆翮, 白晓智, 韩军涛. 抗菌肽在糖尿病创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 78-82.
[4] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[5] 何雪锋, 赵世新, 李珮珊, 刘恒登, 谢举临. 卡奴卡叶提取物通过增强真皮成纤维细胞功能促进大鼠创面修复的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 405-412.
[6] 汪国建, 谭雨龙, 龙爽, 吕晓凡, 赵娜, 冉新泽, 王军平, 王涛. 高温高湿环境暴露对重度放创复合伤小鼠损伤恢复的影响[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 285-292.
[7] 黄瑞娟, 德奇, 巴特, 周彪. 对人脐带间充质干细胞外泌体影响热损伤人皮肤成纤维细胞迁移的分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 229-234.
[8] 程飚. 浓缩血小板制品在创面修复中应用与思考[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 276-276.
[9] 魏忠玲, 陈赟, 叶美霞, 杨珺雯, 袁竺方. 不同种类敷料治疗糖尿病足疗效比较的网状荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 157-165.
[10] 甄妙, 李婧婷, 王鹏, 舒斌. 对表皮干细胞外泌体影响增生性瘢痕成纤维细胞作用的观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 134-143.
[11] 陈旭渊, 罗仕云, 李文忠, 李毅. 腺源性肛瘘经手术治疗后创面愈合困难的危险因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 82-85.
[12] 李颖思, 符芳, 杨昕, 邓琼, 周航, 程肯, 李东至, 廖灿. 单细胞RNA测序技术探究CCN2基因在特纳综合征胎儿颈部淋巴水囊瘤中的关键作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 220-228.
[13] 那迪娜·帕尔哈提, 黄陈. 肿瘤相关成纤维细胞在结直肠癌发生与发展及化疗耐药中的作用研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(03): 241-247.
[14] 陈晓丹, 李淑霞, 薛婷, 侯红瑛, 韩振艳. FGF19在妊娠期肝内胆汁淤积症患者血清中的表达水平及相关因素分析[J]. 中华产科急救电子杂志, 2023, 12(04): 239-243.
[15] 陈晓佩, 余丹, 潘君, 孔佳超, 李欢, 吴天凤. SGLT2抑制剂对中老年糖尿病患者血清FGF21水平的影响[J]. 中华老年病研究电子杂志, 2023, 10(03): 35-38.
阅读次数
全文


摘要