[1] |
Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314-321.
|
[2] |
Coentro JQ, Pugliese E, Hanley G, et al. Current and upcoming therapies to modulate skin scarring and fibrosis[J]. Adv Drug Deliv Rev, 2019, 146: 37-59.
|
[3] |
Plikus MV, Guerrero-Juarez CF, Ito M, et al. Regeneration of fat cells from myofibroblasts during wound healing[J]. Science, 2017, 355(6326): 748-752.
|
[4] |
Wang H, Yang Y, Liu J, et al. Direct cell reprogramming: approaches, mechanisms and progress[J]. Nat Rev Mol Cell Biol, 2021, 22(6): 410-424.
|
[5] |
Tani H, Sadahiro T, Yamada Y, et al. Direct reprogramming improves cardiac function and reverses fibrosis in chronic myocardial infarction[J]. Circulation, 2023, 147(3): 223-238.
|
[6] |
Mascharak S, desJardins-Park HE, Davitt MF, et al. Preventing engrailed-1 activation in fibroblasts yields wound regeneration without scarring[J]. Science, 2021, 372(6540): eaba2374.
|
[7] |
Sandri G, Aguzzi C, Rossi S, et al. Halloysite and chitosan oligosaccharide nanocomposite for wound healing[J]. Acta Biomater, 2017, 57: 216-224.
|
[8] |
刘雪婷,白春雨,关伟军,等. 表皮干细胞的生物学特性及其潜在应用[J]. 生物技术通报,2016 (1): 29-32.
|
[9] |
李彬彬,孙培鸣,孙宏伟,等. 表皮干细胞研究进展[J]. 医学研究杂志,2021, 50(1): 156-159.
|
[10] |
Kurita M, Araoka T, Hishida T, et al. In vivo reprogramming of wound-resident cells generates skin epithelial tissue[J]. Nature, 2018, 561(7722): 243-247.
|
[11] |
Yang R, Zheng Y, Burrows M, et al. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells[J]. Nat Commun, 2014, 5: 3071.
|
[12] |
Sun X, Xiang J, Chen R, et al. Sweat gland organoids originating from reprogrammed epidermal keratinocytes functionally recapitulated damaged skin[J]. Adv Sci (Weinh), 2021, 8(22): e2103079.
|
[13] |
Ji SF, Zhou LX, Sun ZF, et al. Small molecules facilitate single factor-mediated sweat gland cell reprogramming[J]. Mil Med Res, 2022, 9(1): 13.
|
[14] |
Guan J, Wang G, Wang J, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells[J]. Nature, 2022, 605(7909): 325-331.
|
[15] |
Allanki S, Strilic B, Scheinberger L, et al. Interleukin-11 signaling promotes cellular reprogramming and limits fibrotic scarring during tissue regeneration[J]. Sci Adv, 2021, 7(37): eabg6497.
|
[16] |
Mazini L, Rochette L, Admou B, et al. Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in Wound Healing[J]. Int J Mol Sci, 2020, 21(4): 1306.
|
[17] |
杨玲玲,黄悦,王洪一,等. 脂肪干细胞抑制炎症对缓解兔耳增生性瘢痕形成效果研究[J]. 临床军医杂志,2022, 50(5): 503-506, 509.
|
[18] |
Kim WS, Park BS, Sung JH, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts[J]. J Dermatol Sci, 2007, 48(1): 15-24.
|
[19] |
Nambu M, Kishimoto S, Nakamura S, et al. Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix[J]. Ann Plast Surg, 2009, 62(3): 317-321.
|
[20] |
Jeong JH. Adipose stem cells and skin repair[J]. Curr Stem Cell Res Ther, 2010, 5(2): 137-140.
|
[21] |
Shao Y, Chen QZ, Zeng YH, et al. All-trans retinoic acid shifts rosiglitazone-induced adipogenic differentiation to osteogenic differentiation in mouse embryonic fibroblasts[J]. Int J Mol Med, 2016, 38(6): 1693-1702.
|
[22] |
Zhang LJ, Guerrero-Juarez CF, Hata T, et al. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection[J]. Science, 2015, 347(6217): 67-71.
|
[23] |
Franz A, Wood W, Martin P. Fat body cells are motile and actively migrate to wounds to drive Repair and Prevent Infection[J]. Dev Cell, 2018, 44(4): 460-470.e3.
|
[24] |
Kwon HH, Yang SH, Lee J, et al. Combination treatment with human adipose tissue stem cell-derived exosomes and fractional CO2 laser for acne scars: a 12-week prospective, double-blind, randomized, split-face study[J]. Acta Derm Venereol, 2020, 100(18): adv00310.
|
[25] |
谭景铭,周胤朴. 脂肪干细胞外泌体应用于瘢痕治疗的研究进展[J]. 医学研究生学报,2022, 35(6): 668-672.
|
[26] |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676.
|
[27] |
Li D, Shu X, Zhu P, et al. Chromatin accessibility dynamics during cell fate reprogramming[J]. EMBO Rep, 2021, 22(2): e51644.
|
[28] |
Xie X, Jankauskas R, Mazari AMA, et al. beta-actin regulates a heterochromatin landscape essential for optimal induction of neuronal programs during direct reprograming[J]. PLoS Genet, 2018, 14(12): e1007846.
|
[29] |
Balmer P, Hariton WVJ, Sayar BS, et al. SUV39H2 epigenetic silencing controls fate conversion of epidermal stem and progenitor cells[J]. J Cell Biol, 2021, 220(4): e201908178.
|
[30] |
Adachi K, Kopp W, Wu G, et al. Esrrb unlocks silenced enhancers for reprogramming to naive pluripotency[J]. Cell Stem Cell, 2018, 23(2): 266-275.e6.
|
[31] |
Hernandez C, Wang Z, Ramazanov B, et al. Dppa2/4 facilitate epigenetic remodeling during reprogramming to pluripotency[J]. Cell Stem Cell, 2018, 23(3): 396-411.e8.
|
[32] |
Pastor WA, Liu W, Chen D, et al. TFAP2C regulates transcription in human naive pluripotency by opening enhancers[J]. Nat Cell Biol, 2018, 20(5): 553-564.
|
[33] |
Gorecka J, Kostiuk V, Fereydooni A, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing[J]. Stem Cell Res Ther, 2019, 10(1): 87.
|
[34] |
Judson RL, Babiarz JE, Venere M, et al. Embryonic stem cell-specific microRNAs promote induced pluripotency[J]. Nat Biotechnol, 2009, 27(5): 459-461.
|
[35] |
Oshima H, Rochat A, Kedzia C, et al. Morphogenesis and renewal of hair follicles from adult multipotent stem cells[J]. Cell, 2001, 104(2): 233-245.
|
[36] |
Zhang J, Guan J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis[J]. J Transl Med, 2015, 13: 49.
|
[37] |
Dash BC, Korutla L, Vallabhajosyula P, et al. Unlocking the potential of induced pluripotent stem cells for wound healing: the next frontier of regenerative medicine[J]. Adv Wound Care (New Rochelle), 2022, 11(11): 622-638.
|
[38] |
Doeser MC, Scholer HR, Wu G. Reduction of fibrosis and scar formation by partial reprogramming in vivo[J]. Stem Cells, 2018, 36(8): 1216-1225.
|
[39] |
Clayton ZE, Tan RP, Miravet MM, et al. Induced pluripotent stem cell-derived endothelial cells promote angiogenesis and accelerate wound closure in a murine excisional wound healing model[J]. Biosci Rep, 2018, 38(4):BSR20180563.
|
[40] |
Wu R, Du D, Bo Y, et al. Hsp90alpha promotes the migration of iPSCs-derived keratinocyte to accelerate deep second-degree burn wound healing in mice[J]. Biochem Biophys Res Commun, 2019, 520(1): 145-151.
|
[41] |
Yan Y, Jiang J, Zhang M, et al. Effect of iPSCs-derived keratinocytes on healing of full-thickness skin wounds in mice[J]. Exp Cell Res, 2019, 385(1): 111627.
|
[42] |
Gill D, Parry A, Santos F, et al. Multi-omic rejuvenation of human cells by maturation phase transient reprogramming[J]. Elife, 2022, 11: e71624.
|
[43] |
Sacco AM, Belviso I, Romano V, et al. Diversity of dermal fibroblasts as major determinant of variability in cell reprogramming[J]. J Cell Mol Med, 2019, 23(6): 4256-4268.
|
[44] |
Okita K, Nakagawa M, Hyenjong H, et al. Generation of mouse induced pluripotent stem cells without viral vectors[J]. Science, 2008, 322(5903): 949-953.
|
[45] |
Romanazzo S, Lin K, Srivastava P, et al. Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming[J]. Adv Drug Deliv Rev, 2020, 161-162: 124-144.
|