切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2025, Vol. 20 ›› Issue (02) : 179 -183. doi: 10.3877/cma.j.issn.1673-9450.2025.02.017

综述

贫铀对线粒体损伤影响的研究进展
黄凤1, 李文润1, 冉永红1, 谌莉1, 刘泓伽1, 王秋池1, 郝玉徽,1   
  1. 1. 400038 重庆,陆军军医大学军事预防医学系创伤与化学中毒全国重点实验室
  • 收稿日期:2024-10-29 出版日期:2025-04-01
  • 通信作者: 郝玉徽
  • 基金资助:
    国家自然科学基金面上项目(82473576)重庆市教委科学技术研究项目(KJQN202412806)陆军军医大学研究项目(202490031018)

Research progress on the influence of depleted uranium on mitochondrial damage

Feng Huang1, Wenrun Li1, Yonghong Ran1, Li Chen1, Hongjia Liu1, Qiuchi Wang1, Yuhui Hao,1   

  1. 1. Department of Military Preventive Medicine,Army Medical University, State Key Laboratory of Trauma and Chemical Poisoning,400038 Chongqing,China
  • Received:2024-10-29 Published:2025-04-01
  • Corresponding author: Yuhui Hao
引用本文:

黄凤, 李文润, 冉永红, 谌莉, 刘泓伽, 王秋池, 郝玉徽. 贫铀对线粒体损伤影响的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 179-183.

Feng Huang, Wenrun Li, Yonghong Ran, Li Chen, Hongjia Liu, Qiuchi Wang, Yuhui Hao. Research progress on the influence of depleted uranium on mitochondrial damage[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2025, 20(02): 179-183.

贫铀(DU)是天然铀加工处理后的副产物,主要是提取高浓度铀后剩余的铀材料,被广泛用于军事领域和民事活动中。 DU 一旦进入人体,会对多个器官系统(如肾脏、肺、骨骼、神经系统和免疫系统)产生不利影响。 线粒体是DU 作用的敏感靶标,DU 的积累会导致线粒体电子传递链受损、膜通透性和电位的改变、氧化应激和钙离子紊乱。 本文阐述了DU 的线粒体毒性及其潜在机制,旨在为DU 中毒的机制研究和干预治疗提供参考依据。

Depleted uranium (DU) is a byproduct of the processing and enrichment of natural uranium, primarily remaining after the extraction of highly concentrated uranium.It is widely used in both military and civilian applications.Once DU enters the human body,it exerts adverse effects on multiple organ systems, including the kidneys, lungs, bones, nervous system, and immune system.Mitochondria are sensitive targets of DU toxicity.The accumulation of DU can lead to damage in the mitochondrial electron transport chain, alterations in membrane permeability and potential, oxidative stress, and calcium ion dysregulation.This review comprehensively summarizes the mitochondrial toxicity of DU and its potential mechanisms, aiming to provide a reference for further research into the mechanisms of DU poisoning and the development of intervention strategies.This article elucidates the mitochondrial toxicity of depleted uranium and its potential mechanisms,aiming to provide a reference for further research into the mechanisms to depleted uranium poisoning and the development of interventianal treatments.

[1]
Costa Peluzo BMT, Kraka E.Uranium:the nuclear fuel cycle and beyond [J].Int J Mol Sci, 2022, 23(9):4655.
[2]
Truong-Phuoc L, Nhut JM, Sall S, et al.Not just another methanation catalyst:depleted uranium meets nickel for a highperforming process under autothermal regime [J].Chem Sus Chem,2023, 16(5):e202201859.
[3]
Lind OC,Tschiersch J,Salbu B.Nanometer-micrometer sized depleted uranium (DU) particles in the environment [J].J Environ Radioact, 2020, 211:106077.
[4]
Faa A, Gerosa C, Fanni D, et al.Depleted uranium and human health [J].Curr Med Chem, 2018, 25(1):49-64.
[5]
Ma M,Wang R,Xu L,et al.Emerging health risks and underlying toxicological mechanisms of uranium contamination:lessons from the past two decades[J].Environ Int, 2020, 145:106107.
[6]
Li W,Shen L,Fu S,et al.Mitochondrial-targeting mesoporous polydopamine nanoparticles for reducing kidney injury caused by depleted uranium[J].Adv Healthc Mater,2024:e2403015.
[7]
Schilz JR,Dashner-Titus EJ,Simmons KA,et al.The immunotoxicity of natural and depleted uranium:from cells to people [J].Toxicol Appl Pharmacol,2022,454:116252.
[8]
Zhang L,Chu J,Xia B, et al.Health effects of particulate uranium exposure [J].Toxics, 2022, 10(10):575.
[9]
Todd ECD.Waterborne diseases and wastewater treatment in Iraq[J].J Food Prot, 2024, 87(1):100204.
[10]
Semenova Y,Pivina L,Zhunussov Y,et al.Radiation-related health hazards to uranium miners [J].Environ Sci Pollut Res Int,2020, 27(28):34808-34822.
[11]
Barathkumar S,Padhi RK, Parida PK, et al.In vivo appraisal of oxidative stress response, cell ultrastructural aberration and accumulation in Juvenile Scylla serrata exposed to uranium [J].Chemosphere, 2022, 300:134561.
[12]
Barillet S, Larno V, Floriani M, et al.Ultrastructural effects on gill, muscle, and gonadal tissues induced in zebrafish (Danio rerio) by a waterborne uranium exposure [J].Aquat Toxicol,2010, 100(3):295-302.
[13]
Annesley SJ,Fisher PR.Mitochondria in health and disease[J].Cells, 2019, 8(7):680.
[14]
He L,Maheshwari A.Mitochondria in early life [J].Curr Pediatr Rev, 2023, 19(4):395-416.
[15]
Hunt M,Torres M,Bachar-Wikström E,et al.Multifaceted roles of mitochondria in wound healing and chronic wound pathogenesis[J].Front Cell Dev Biol, 2023, 11:1252318.
[16]
Zhu G,Xiang X,Chen X,et al.Renal dysfunction induced by longterm exposure to depleted uranium in rats [J].Arch Toxicol,2009,83(1):37-46.
[17]
Hao Y,Ren J,Liu C,et al.Zinc protects human kidney cells from depleted uranium-induced apoptosis [J].Basic Clin Pharmacol Toxicol, 2014, 114(3):271-280.
[18]
Shaki F, Hosseini MJ, Ghazi-khansari M, et al.Toxicity of depleted uranium on isolated rat kidney mitochondria [J].Biochim Biophys Acta, 2012, 1820(12):1940-1950.
[19]
Guéguen Y, Frerejacques M.Review of knowledge of uraniuminduced kidney toxicity for the development of an adverse outcome pathway to renal impairment [J].Int J Mol Sci, 2022, 23(8):4397.
[20]
Armant O,Gombeau K,Murat EL Houdigui S, et al.Zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels[J].PLoS One, 2017, 12(5):e0177932.
[21]
Fu L,Ding Z,Kumpeangkeaw A,et al.Gene coexpression analysis reveals dose-dependent and type-specific networks responding to ionizing radiation in the aquatic model plant Lemna minor using public data[J].J Genet, 2019,98:9.
[22]
Lerebours A, Adam-Guillermin C, Brèthes D,et al.Mitochondrial energetic metabolism perturbations in skeletal muscles and brain of zebrafish (Danio rerio) exposed to low concentrations of waterborne uranium [J].Aquat Toxicol,2010,100(1):66-74.
[23]
Yu L, Li W, Chu J, et al.Uranium inhibits mammalian mitochondrial cytochrome c oxidase and ATP synthase [J].Environ Pollut, 2021, 271:116377.
[24]
殷俊.附子多糖对深低温冻存血管平滑肌线粒体膜通透性转换孔的研究[D].遵义医科大学, 2023.
[25]
Shaki F,Hosseini MJ,Ghazi-Khansari M, et al.Depleted uranium induces disruption of energy homeostasis and oxidative stress in isolated rat brain mitochondria[J].Metallomics, 2013, 5(6):736-744.
[26]
Soltani M, Zarei MH, Salimi A, et al.Mitochondrial protective and antioxidant agents protect toxicity induced by depleted uranium in isolated human lymphocytes[J].J Environ Radioact,2019, 203:112-116.
[27]
Cheraghi G, Hajiabedi E, Niaghi B, et al.High doses of sodium tungstate can promote mitochondrial dysfunction and oxidative stress in isolated mitochondria [J].J Biochem Mol Toxicol,2019, 33(4):e22266.
[28]
Liu F,Du KJ,Fang Z,et al.Chemical and biological insights into uranium-induced apoptosis of rat hepatic cell line [J].Radiat Environ Bioph, 2015, 54(2):207-216.
[29]
Song Y,Salbu B,Teien HC, et al.Hepatic transcriptomic profiling reveals early toxicological mechanisms of uranium in Atlantic salmon (SALMO SALAR) [J].Bmc Genomics,2014,15(1):694.
[30]
Huang L,Sun G, Xu W, et al.Uranium uptake is mediated markedly by clathrin-mediated endocytosis and induce dosedependent toxicity in HK-2 cells [ J].Environ Toxicol Pharmacol, 2023, 101:104171.
[31]
程明月, 郭海, 郑宏.糖尿病心肌中线粒体膜通透性转化孔变化的研究进展[J].新医学, 2016, 47(2):73-75.
[32]
Lu B,Ran Y,Wang S,et al.Chronic oral depleted uranium leads to reproductive damage in male rats through the ROS-hnRNP A2/B1-COX-2 signaling pathway [J].Toxicology,2021,449:152666.
[33]
Hu Q, Zheng J, Xu Xn, et al.Uranium induces kidney cells apoptosis via reactive oxygen species generation, endoplasmic reticulum stress and inhibition of PI3K/AKT/mTOR signaling in culture [J].Environ Toxicol, 2022, 37(4):899-909.
[34]
Yi J, Yuan Y, Zheng J, et al.Hydrogen sulfide alleviates uraniuminduced rat hepatocyte cytotoxicity via inhibiting Nox4/ROS/p38 MAPK pathway [J].J Biochem Mol Toxicol, 2019, 33(3):e22255.
[35]
Yi J, Yuan Y, Zheng J, et al.Hydrogen sulfide alleviates uranium-induced kidney cell apoptosis mediated by ER stress via 20S proteasome involving in Akt/GSK-3β/Fyn-Nrf2 signaling[J].Free Radic Res, 2018, 52(9):1020-1029.
[36]
Li W,Yu L,Fu B,et al.Protective effects of Polygonatum kingianum polysaccharides and aqueous extract on uranium-induced toxicity in human kidney (HK-2) cells [J].Int J Biol Macromol, 2022, 202:68-79.
[37]
Shaki F,Pourahmad J.Mitochondrial toxicity of depleted uranium:protection by Beta-glucan [J].Iran J Pharm Res, 2013,12(1):131-140.
[38]
Hao Y, Huang J, Liu C, et al.Differential protein expression in metallothionein protection from depleted uranium-induced nephrotoxicity [J].Sci Rep, 2016, 6:38942.
[39]
Liu S, Wang S, Zhao Y, et al.Depleted uranium causes renal mitochondrial dysfunction through the ETHE1/Nrf2 pathway [J].Chem Biol Interact, 2023, 372:110356.
[40]
Zhang Y,Lai JL,Ji XH, et al.Unraveling response mechanism of photosynthetic metabolism and respiratory metabolism to uraniumexposure in Vicia faba [J].J Hazard Mater,2020,398:122997.
[41]
Dryden MS, Cooke J, Salib RJ, et al.Reactive oxygen:a novel antimicrobial mechanism for targeting biofilm-associated infection[J].J Glob Antimicrob Resist, 2017, 8:186-191.
[42]
Wang B,Wang Y,Zhang J, et al.ROS-induced lipid peroxidation modulates cell death outcome:mechanisms behind apoptosis,autophagy, and ferroptosis [J].Arch Toxicol, 2023, 97(6):1439-1451.
[43]
Bjørklund G, Pivina L, Dadar M, et al.Depleted uranium and gulf war illness:updates and comments on possible mechanisms behind the syndrome [J].Environ Res, 2020, 181:108927.
[44]
Augustine S,Pereira S, Floriani M, et al.Effects of chronic exposure to environmentally relevant concentrations of waterborne depleted uranium on the digestive tract of zebrafish, Danio rerio[J].J Environ Radioact, 2015, 142:45-53.
[45]
Ondrias K,Sirova M, Kubovcakova L, et al.Uranyl acetate modu-lates gene expression and protein levels of the type 2, but not type 1 inositol 1,4,5-trisphosphate receptors in mouse kidney[J].Gen Physiol Biophys, 2008, 27(3):187-193.
[46]
Bittremieux M,La Rovere RM, Schuermans M, et al.Extracellular and ER-stored Ca2+ contribute to BIRD-2-induced cell death in diffuse large B-cell lymphoma cells [J].Cell Death Discov, 2018,4:101.
[47]
Kopacek J, Ondrias K, Sedlakova B, et al.Type 2 IP(3) receptors are involved in uranyl acetate induced apoptosis in HEK 293 cells [J].Toxicology, 2009, 262(1):73-79.
[48]
Waz S,Heeba GH, Hassanin SO, et al.Nephroprotective effect of exogenous hydrogen sulfide donor against cyclophosphamideinduced toxicity is mediated by Nrf2/HO-1/NF-κB signaling pathway [J].Life Sci, 2021, 264:118630.
[49]
郝玉徽.贫铀暴露对肾脏和免疫系统的影响及锌的解毒作用研究[D].第三军医大学,2013.
[50]
Shao CS, Zhou XH, Miao YH, et al.In situ observation of mitochondrial biogenesis as the early event of apoptosis [J].iScience, 2021, 24(9):103038.
[51]
Hao Y, Huang J, Ran Y, et al.Ethylmalonic encephalopathy 1 initiates overactive autophagy in depleted uranium-induced cytotoxicity in the human embryonic kidney 293 cells[J].J Biochem Mol Toxicol, 2021, 35(3):e22669.
[52]
Ran Y,Wang S,Zhao Y,et al.A review of biological effects and treatments of inhaled depleted uranium aerosol [J].J Environ Radioact, 2020, 222:106357.
[53]
Hao Y, Gao R,Lu B,et al.Ghrelin protects against depleted uraniuminduced bone damage by increasing osteoprotegerin/RANKL ratio [J].Toxicol Appl Pharmacol, 2018, 343:62-70.
[54]
Du ZZ, Huang X, Wu ZF, et al.A Mitochondria-targeted heptamethine indocyanine small molecular chelator for attenuating uranium nephrotoxicity[J].Pharmaceuticals-Base,2024,17(8):995.
[1] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J/OL]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[2] 王帆, 余辉, 谢佳乐, 许焕焕, 马瑞, 依日夏提·艾海提, 许珂, 许鹏. 成纤维样滑膜细胞在类风湿关节炎发病机制中的作用[J/OL]. 中华关节外科杂志(电子版), 2024, 18(02): 225-230.
[3] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[4] 李文润, 谌莉, 舒畅, 柳随义, 冉永红, 冉新泽, 郝玉徽. 贫铀肾毒性和促排剂的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 83-86.
[5] 孙鸿坤, 艾虹, 陈正. 内质网应激介导的牙周炎骨改建失衡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 211-218.
[6] 罗远杰, 杨靖梅, 孟姝, 敖逸博, 申道南. 槲皮素防治口腔疾病的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 117-122.
[7] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[8] 吕巧, 闵迁, 姜露, 陈黔, 彭锦, 代黔. 过表达KLF7 对非小细胞肺癌细胞增殖凋亡的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 1-7.
[9] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[10] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[11] 王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.
[12] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[13] 李景德, 张保艳, 卢培刚, 李博. 法舒地尔对大鼠急性脊髓损伤后神经细胞凋亡和BCL-2蛋白表达水平的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 65-70.
[14] 江倩, 王红蕊, 朱玥荃, 李响, 耿晓坤, 李凤武. 药物诱导亚低温对缺血性脑卒中的神经保护作用及DRP-1 调控线粒体功能在其中的潜在分子机制[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 586-594.
[15] 罗婷, 邱令智, 易东, 鄢华. 线粒体功能障碍与心血管疾病、缺血性脑卒中及慢性肾脏病关系的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 60-63.
阅读次数
全文
0
HTML PDF
最新录用 在线预览 正式出版 最新录用 在线预览 正式出版
0 0 0 0 0 0


摘要
6
最新录用 在线预览 正式出版
0 0 6
  来源 其他网站
  次数 6
  比例 100%