切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2025, Vol. 20 ›› Issue (02) : 174 -178. doi: 10.3877/cma.j.issn.1673-9450.2025.02.016

综述

基于上皮嵴微结构的移植物在促进创面愈合中的作用机制与临床应用进展
靳顺欣1, 庞嘉越成1, 肖仕初1,()   
  1. 1. 200433 上海,海军军医大学第一附属医院烧伤外科
  • 收稿日期:2024-10-13 出版日期:2025-04-01
  • 通信作者: 肖仕初
  • 基金资助:
    国家自然科学基金(82372513、82172201、81871559)

Advances in the mechanism and clinical application of rete ridges microstructure-based grafts in promoting wound healing

Shunxin Jin1, Jiayuecheng Pang1, Shichu Xiao1,()   

  1. 1. Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
  • Received:2024-10-13 Published:2025-04-01
  • Corresponding author: Shichu Xiao
引用本文:

靳顺欣, 庞嘉越成, 肖仕初. 基于上皮嵴微结构的移植物在促进创面愈合中的作用机制与临床应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 174-178.

Shunxin Jin, Jiayuecheng Pang, Shichu Xiao. Advances in the mechanism and clinical application of rete ridges microstructure-based grafts in promoting wound healing[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2025, 20(02): 174-178.

上皮嵴(RRs)是皮肤真皮与表皮结合部位的结构单元,由基部、斜坡和尖端3 个部分组成。 RRs 通过增加表皮与真皮的接触面积,促进二者机械连接,增强皮肤的机械性能和稳定性。 RRs还在优化皮肤营养供应、促进干细胞增殖和分化等方面发挥作用。 RRs 的形成受到物理应力、细胞张力和分子信号传导的调控。 在皮肤组织工程中,RRs 的微结构重建是促进创面愈合和提高移植物性能的重要一环。 近年来,研究者通过光刻、3D 打印等技术,成功制备了包含RRs 微结构的生物材料和移植物,为创面修复提供了新思路。 尽管,目前研究已取得了一定进展,但仍存在RRs 标准化制备、材料选择、细胞类型与培养条件等问题。 本文通过综述RRs 的结构特点、形成机制及其在皮肤组织工程中的应用,阐述RRs 在创面愈合中的重要性,以期为复杂创面修复提供有效技术支持。

Rete ridges (RRs) are structural units located at the dermal-epidermal junction of the skin, consisting of a base, slope, and tip.By increasing the contact area between the epidermis and dermis,RRs facilitate mechanical interlocking between the two layers, thereby enhancing the mechanical properties and stability of the skin.Additionally, RRs contribute to optimizing nutrient supply, promoting stem cell proliferation and differentiation, and maintaining skin homeostasis.The formation of RRs is regulated by physical stress, cellular tension, and molecular signaling pathways.In skin tissue engineering, the reconstruction of RRs microstructures plays a critical role in promoting wound healing and improving graft performance.Recent advancements have enabled the fabrication of biomaterials and grafts incorporating RRs microstructures through techniques such as photolithography and 3D printing, offering new approaches for wound repair.Despite these advancements, challenges remain in the standardized fabrication of RRs,material selection, cell types, and culture conditions.This review summarizes the structural characteristics,formation mechanisms, and applications of RRs in skin tissue engineering, highlights their significance in wound healing to provide effective technological solutions for complex wound repair.

[1]
Roig-Rosello E, Rousselle P.The human epidermal basement membrane:a shaped and cell instructive platform that aging slowly alters[J].Biomolecules, 2020, 10(12):1607.
[2]
Gao C,Lu C,Jian Z,et al.3D bioprinting for fabricating artificial skin tissue[J].Colloids Surf B Biointerfaces,2021,208:112041.
[3]
Lin CH, Chiu PY, Hsueh YY, et al.Regeneration of rete ridges in Lanyu pig (Sus scrofa):insights for human skin wound healing[J].Exp Dermatol, 2019, 28(4):472-479.
[4]
Li L,Chen H,He S,et al.The adhesive heterogeneity of different compartments of oral mucosal rete ridges[J].Exp Dermatol, 2022,31(3):413-419.
[5]
Aleemardani M, Triki MZ, Green NH, et al.The importance of mimicking dermal-epidermal junction for skin tissue engineering:a review[J].Bioengineering(Basel), 2021, 8(11):148.
[6]
Suzuki A, Kato H, Kawakami T, et al.Development of microstructured fish scale collagen scaffolds to manufacture a tissueengineered oral mucosa equivalent[J].J Biomater Sci Polym Ed,2020, 31(5):578-600.
[7]
Gao C,Lu C,Liu H,et al.Biofabrication of biomimetic undulating microtopography at the dermal-epidermal junction and its effects on the growth and differentiation of epidermal cells[J].Biofabrication,2024,16(2):025018.
[8]
Viswanathan P, Guvendiren M, Chua W, et al.Mimicking the topography of the epidermal-dermal interface with elastomer substrates[J].Integrative Biology, 2016, 8(1):21-29.
[9]
Lawlor K, Kaur P.Dermal contributions to human interfollicular epidermal architecture and self-renewal[J].Int J Mol Sci,2015,16(12):28098-28107.
[10]
Elgharably H, Roy S, Khanna S, et al.A modified collagen gel enhances healing outcome in a preclinical swine model of excisional wounds[J].Wound Repair and Regeneration, 2013,21(3):473-481.
[11]
Wang T,Wu H, Huang Y, et al.Biomimetic bilayered gelatinchondroitin 6 sulfate-hyaluronic acid biopolymer as a scaffold for skin equivalent tissue engineering[J].Artificial Organs, 2006,30(3):141-149.
[12]
Blackstone BN, Malara MM, Baumann ME, et al.Fractional CO2 laser micropatterning of cell-seeded electrospun collagen scaffolds enables rete ridge formation in 3D engineered skin[J].Acta Biomaterialia, 2020, 102:287-297.
[13]
Clement AL, Moutinho TJ, Pins GD.Micropatterned dermalepidermal regeneration matrices create functional niches that enhance epidermal morphogenesis[J].Acta Biomaterialia,2013,9(12):9474-9484.
[14]
Asencio IO, Mittar S,Sherborne C,et al.A methodology for the production of microfabricated electrospun membranes for the creation of new skin regeneration models[J].J Tissue Eng,2018, 9:204173141879985.
[15]
Wu T, Xiong X, Zhang W, et al.Morphogenesis of rete ridges in human oral mucosa:a pioneering morphological and immunohistochemical study[J].Cells Tissues Organs, 2013,197(3):239-248.
[16]
Reed RC, Johnson DE, Nie AM.Preterm infant skin structure is qualitatively and quantitatively different from that of term newborns[J].Pediatr Dev Pathol, 2021, 24(2):96-102.
[17]
Kobayashi Y,Yasugahira Y,Kitahata H, et al.Interplay between epidermal stem cell dynamics and dermal deformation[J].npj Comput Mate, 2018, 4(1):45.
[18]
Ohno K, Kobayashi Y, Uesaka M, et al.A computational model of the epidermis with the deformable dermis and its application to skin diseases[J].Sci Rep, 2021, 11(1):13234.
[19]
Xiong X, Wu T, He S.Physical forces make rete ridges in oral mucosa[J].Medical Hypotheses, 2013, 81(5):883-886.
[20]
Topczewska JM,Ledwon JK,Vaca EE,et al.Mechanical stretching stimulates growth of the basal layer and rete ridges in the epidermis[J].J Tissue Eng Regen Med,2019,13(11):2121-2125.
[21]
Flores OM,Rausch MK, Tepole AB.The role of interface geometry and appendages on the mesoscale mechanics of the skin[J].Res sq[Preprint],2023,24:rs.3.rs-3182434.
[22]
Arakawa N, Utsumi D, Takahashi K, et al.Expression changes of structural protein genes may be related to adaptive skin characteristics specific to humans[J].Genome Biol Evol, 2019,11(3):613-628.
[23]
Langton AK, Graham HK, McConnell JC, et al.Organization of the dermal matrix impacts the biomechanical properties of skin[J].Br J Dermatol, 2017, 177(3):818-827.
[24]
Mizukoshi K,Yonekura K, Futagawa M, et al.Changes in dermal papilla structures due to aging in the facial cheek region[J].Skin Res Technol,2015,21(2):224-231.
[25]
Yu JZ, Korkmaz E, Berg MI, et al.Biomimetic scaffolds with three-dimensional undulated microtopographies[J].Biomaterials,2017,128:109-120.
[26]
Suzuki A,Kodama Y,Miwa K,et al.Manufacturing micropatterned collagen scaffolds with chemical-crosslinking for development of biomimetic tissue-engineered oral mucosa[J].Sci Rep, 2020, 10(1):22192.
[27]
Lammers G,Roth G,Heck M,et al.Construction of a microstructured collagen membrane mimicking the papillary dermis architecture and guiding keratinocyte morphology and gene expression[J].Macromol Biosci, 2012, 12(5):675-691.
[28]
Ramos-Rodriguez DH,MacNeil S,Claeyssens F,et al.The use of microfabrication techniques for the design and manufacture of artificial stem cell microenvironments for tissue regeneration[J].Bioengineering(Basel), 2021, 8(5):50.
[29]
Wang S, Drummond ML, Guerrero-Juarez CF, et al.Single cell transcriptomics of human epidermis identifies basal stem cell transition states[J].Nat Commun, 2020, 11(1):4239.
[30]
Callens SJP, Uyttendaele RJC, Fratila-Apachitei LE,et al.Substrate curvature as a cue to guide spatiotemporal cell and tissue organization[J].Biomaterials, 2020, 232:119739.
[31]
Mobasseri SA,Zijl S,Salameti V,et al.Patterning of human epidermal stem cells on undulating elastomer substrates reflects differences in cell stiffness[J].Acta Biomater, 2019, 87:256-264.
[32]
Lane SW,Williams DA, Watt FM.Modulating the stem cell niche for tissue regeneration[J].Na Biotechnol,2014,32(8):795-803.
[33]
Bush KA, Pins GD.Development of microfabricated dermal epidermal regenerative matrices to evaluate the role of cellular microenvironments on epidermal morphogenesis[J].Tissue Engineering Part A, 2012, 18(21-22):2343-2353.
[34]
Malara MM,Blackstone BN,Baumann ME,et al.Cultured epithelial autograft combined with micropatterned dermal template forms rete ridges in vivo[J].Tissue Engineering Part A,2020,26(21-22):1138-1146.
[35]
Ramos-Rodriguez DH, MacNeil S,Claeyssens F, et al.Fabrication of topographically controlled electrospun scaffolds to mimic the stem cell microenvironment in the dermal-epidermal junction[J].ACS Biomater Sci Eng,2021,7(6):2803-2813.
[36]
Shen Z, Cao Y, Li M, et al.Construction of tissue-engineered skin with rete ridges using co-network hydrogels of gelatin methacrylated and poly(ethylene glycol) diacrylate[J].Mater Sci Eng C Mater Biol Appl, 2021, 129:112360.
[37]
Blackstone BN, Malara MM, Baumann ME, et al.Laser micropatterning promotes rete ridge formation and enhanced engineered skin strength without increased inflammation[J].Bioengineering(Basel), 2023, 10(7):861.
[38]
Baltazar T,Jiang B,Moncayo A,et al.3D bioprinting of an implantable xeno-free vascularized human skin graft[J].Bioeng Transl Med, 2023, 8(1):e10324.
[39]
Li M, Sun L, Liu Z, et al.3D bioprinting of heterogeneous tissue-engineered skin containing human dermal fibroblasts and keratinocytes[J].Biomateri Sci,2023,11(7):2461-2477.
[40]
Kim BS, Lee JS, Gao G, et al.Direct 3D cell-printing of human skin with functional transwell system[J].Biofabrication,2017,9(2):025034.
[41]
Kim BS, Kwon YW, Kong JS, et al.3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink:a step towards advanced skin tissue engineering[J].Biomaterials, 2018, 168:38-53.
[42]
Cubo N,Garcia M,Del Cañizo JF,et al.3D bioprinting of functional human skin:production and in vivo analysis[J].Biofabrication,2016,9(1):015006.
[43]
Choudhury S, Das A.Advances in generation of threedimensional skin equivalents:pre-clinical studies to clinical therapies[J].Cytotherapy, 2021, 23(1):1-9.
[44]
Admane P, Gupta AC, Jois P, et al.Direct 3D bioprinted fullthickness skin constructs recapitulate regulatory signaling pathways and physiology of human skin[J].Bioprinting, 2019,15:e00051.
[45]
Ma J,Wu J,Zhang H,et al.3D printing of diatomite incorporated composite scaffolds for skin repair of deep burn wounds[J].Int J Bioprinting,2022,8(3):580.
[46]
Ma J,Qin C,Wu J,et al.3D printing of strontium silicate microcylinder-containing multicellular biomaterial inks for vascularized skin regeneration[J].Adv Healthc Mater,2021,10(16):2100523.
[1] 周彦彤, 王成. 不同新型敷料在创面中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 163-168.
[2] 李煜, 王鹏, 陆翮, 冯蓉琴, 韩军涛. 采用低频脉冲电刺激治疗深Ⅱ度烧伤创面的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 474-478.
[3] 李亚龙, 王星童, 申传安. 异体富血小板血浆在创面修复中的临床应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 541-545.
[4] 周清洁, 蒋萍萍, 梁云, 李琰. 脂质水胶体技术在创面愈合中的应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 360-363.
[5] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[6] 刘高雨, 罗鹏, 史春梦. 成纤维细胞重编程与创面修复的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(02): 176-179.
[7] 冯蓉琴, 王鹏, 李煜, 陆翮, 白晓智, 韩军涛. 抗菌肽在糖尿病创面愈合中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 78-82.
[8] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[9] 何雪锋, 赵世新, 李珮珊, 刘恒登, 谢举临. 卡奴卡叶提取物通过增强真皮成纤维细胞功能促进大鼠创面修复的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(05): 405-412.
[10] 汪国建, 谭雨龙, 龙爽, 吕晓凡, 赵娜, 冉新泽, 王军平, 王涛. 高温高湿环境暴露对重度放创复合伤小鼠损伤恢复的影响[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(04): 285-292.
[11] 程飚. 浓缩血小板制品在创面修复中应用与思考[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(03): 276-276.
[12] 何泽亮, 李锦, 张程亮, 随振阳, 安亮恩, 刘玲玲, 姚媛媛, 张聚磊, 仇树林, 李晓东. 采用超声清创联合负压吸引疗法治疗深度烧伤溶痂创面的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(02): 123-127.
[13] 陈旭渊, 罗仕云, 李文忠, 李毅. 腺源性肛瘘经手术治疗后创面愈合困难的危险因素分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 82-85.
[14] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[15] 石珊, 徐志刚, 魏双, 官浩, 石继红. 创面病原体在创面愈合与瘢痕形成中的作用进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(10): 955-960.
阅读次数
全文


摘要