[1] |
Roig-Rosello E, Rousselle P.The human epidermal basement membrane:a shaped and cell instructive platform that aging slowly alters[J].Biomolecules, 2020, 10(12):1607.
|
[2] |
Gao C,Lu C,Jian Z,et al.3D bioprinting for fabricating artificial skin tissue[J].Colloids Surf B Biointerfaces,2021,208:112041.
|
[3] |
Lin CH, Chiu PY, Hsueh YY, et al.Regeneration of rete ridges in Lanyu pig (Sus scrofa):insights for human skin wound healing[J].Exp Dermatol, 2019, 28(4):472-479.
|
[4] |
Li L,Chen H,He S,et al.The adhesive heterogeneity of different compartments of oral mucosal rete ridges[J].Exp Dermatol, 2022,31(3):413-419.
|
[5] |
Aleemardani M, Triki MZ, Green NH, et al.The importance of mimicking dermal-epidermal junction for skin tissue engineering:a review[J].Bioengineering(Basel), 2021, 8(11):148.
|
[6] |
Suzuki A, Kato H, Kawakami T, et al.Development of microstructured fish scale collagen scaffolds to manufacture a tissueengineered oral mucosa equivalent[J].J Biomater Sci Polym Ed,2020, 31(5):578-600.
|
[7] |
Gao C,Lu C,Liu H,et al.Biofabrication of biomimetic undulating microtopography at the dermal-epidermal junction and its effects on the growth and differentiation of epidermal cells[J].Biofabrication,2024,16(2):025018.
|
[8] |
Viswanathan P, Guvendiren M, Chua W, et al.Mimicking the topography of the epidermal-dermal interface with elastomer substrates[J].Integrative Biology, 2016, 8(1):21-29.
|
[9] |
Lawlor K, Kaur P.Dermal contributions to human interfollicular epidermal architecture and self-renewal[J].Int J Mol Sci,2015,16(12):28098-28107.
|
[10] |
Elgharably H, Roy S, Khanna S, et al.A modified collagen gel enhances healing outcome in a preclinical swine model of excisional wounds[J].Wound Repair and Regeneration, 2013,21(3):473-481.
|
[11] |
Wang T,Wu H, Huang Y, et al.Biomimetic bilayered gelatinchondroitin 6 sulfate-hyaluronic acid biopolymer as a scaffold for skin equivalent tissue engineering[J].Artificial Organs, 2006,30(3):141-149.
|
[12] |
Blackstone BN, Malara MM, Baumann ME, et al.Fractional CO2 laser micropatterning of cell-seeded electrospun collagen scaffolds enables rete ridge formation in 3D engineered skin[J].Acta Biomaterialia, 2020, 102:287-297.
|
[13] |
Clement AL, Moutinho TJ, Pins GD.Micropatterned dermalepidermal regeneration matrices create functional niches that enhance epidermal morphogenesis[J].Acta Biomaterialia,2013,9(12):9474-9484.
|
[14] |
Asencio IO, Mittar S,Sherborne C,et al.A methodology for the production of microfabricated electrospun membranes for the creation of new skin regeneration models[J].J Tissue Eng,2018, 9:204173141879985.
|
[15] |
Wu T, Xiong X, Zhang W, et al.Morphogenesis of rete ridges in human oral mucosa:a pioneering morphological and immunohistochemical study[J].Cells Tissues Organs, 2013,197(3):239-248.
|
[16] |
Reed RC, Johnson DE, Nie AM.Preterm infant skin structure is qualitatively and quantitatively different from that of term newborns[J].Pediatr Dev Pathol, 2021, 24(2):96-102.
|
[17] |
Kobayashi Y,Yasugahira Y,Kitahata H, et al.Interplay between epidermal stem cell dynamics and dermal deformation[J].npj Comput Mate, 2018, 4(1):45.
|
[18] |
Ohno K, Kobayashi Y, Uesaka M, et al.A computational model of the epidermis with the deformable dermis and its application to skin diseases[J].Sci Rep, 2021, 11(1):13234.
|
[19] |
Xiong X, Wu T, He S.Physical forces make rete ridges in oral mucosa[J].Medical Hypotheses, 2013, 81(5):883-886.
|
[20] |
Topczewska JM,Ledwon JK,Vaca EE,et al.Mechanical stretching stimulates growth of the basal layer and rete ridges in the epidermis[J].J Tissue Eng Regen Med,2019,13(11):2121-2125.
|
[21] |
Flores OM,Rausch MK, Tepole AB.The role of interface geometry and appendages on the mesoscale mechanics of the skin[J].Res sq[Preprint],2023,24:rs.3.rs-3182434.
|
[22] |
Arakawa N, Utsumi D, Takahashi K, et al.Expression changes of structural protein genes may be related to adaptive skin characteristics specific to humans[J].Genome Biol Evol, 2019,11(3):613-628.
|
[23] |
Langton AK, Graham HK, McConnell JC, et al.Organization of the dermal matrix impacts the biomechanical properties of skin[J].Br J Dermatol, 2017, 177(3):818-827.
|
[24] |
Mizukoshi K,Yonekura K, Futagawa M, et al.Changes in dermal papilla structures due to aging in the facial cheek region[J].Skin Res Technol,2015,21(2):224-231.
|
[25] |
Yu JZ, Korkmaz E, Berg MI, et al.Biomimetic scaffolds with three-dimensional undulated microtopographies[J].Biomaterials,2017,128:109-120.
|
[26] |
Suzuki A,Kodama Y,Miwa K,et al.Manufacturing micropatterned collagen scaffolds with chemical-crosslinking for development of biomimetic tissue-engineered oral mucosa[J].Sci Rep, 2020, 10(1):22192.
|
[27] |
Lammers G,Roth G,Heck M,et al.Construction of a microstructured collagen membrane mimicking the papillary dermis architecture and guiding keratinocyte morphology and gene expression[J].Macromol Biosci, 2012, 12(5):675-691.
|
[28] |
Ramos-Rodriguez DH,MacNeil S,Claeyssens F,et al.The use of microfabrication techniques for the design and manufacture of artificial stem cell microenvironments for tissue regeneration[J].Bioengineering(Basel), 2021, 8(5):50.
|
[29] |
Wang S, Drummond ML, Guerrero-Juarez CF, et al.Single cell transcriptomics of human epidermis identifies basal stem cell transition states[J].Nat Commun, 2020, 11(1):4239.
|
[30] |
Callens SJP, Uyttendaele RJC, Fratila-Apachitei LE,et al.Substrate curvature as a cue to guide spatiotemporal cell and tissue organization[J].Biomaterials, 2020, 232:119739.
|
[31] |
Mobasseri SA,Zijl S,Salameti V,et al.Patterning of human epidermal stem cells on undulating elastomer substrates reflects differences in cell stiffness[J].Acta Biomater, 2019, 87:256-264.
|
[32] |
Lane SW,Williams DA, Watt FM.Modulating the stem cell niche for tissue regeneration[J].Na Biotechnol,2014,32(8):795-803.
|
[33] |
Bush KA, Pins GD.Development of microfabricated dermal epidermal regenerative matrices to evaluate the role of cellular microenvironments on epidermal morphogenesis[J].Tissue Engineering Part A, 2012, 18(21-22):2343-2353.
|
[34] |
Malara MM,Blackstone BN,Baumann ME,et al.Cultured epithelial autograft combined with micropatterned dermal template forms rete ridges in vivo[J].Tissue Engineering Part A,2020,26(21-22):1138-1146.
|
[35] |
Ramos-Rodriguez DH, MacNeil S,Claeyssens F, et al.Fabrication of topographically controlled electrospun scaffolds to mimic the stem cell microenvironment in the dermal-epidermal junction[J].ACS Biomater Sci Eng,2021,7(6):2803-2813.
|
[36] |
Shen Z, Cao Y, Li M, et al.Construction of tissue-engineered skin with rete ridges using co-network hydrogels of gelatin methacrylated and poly(ethylene glycol) diacrylate[J].Mater Sci Eng C Mater Biol Appl, 2021, 129:112360.
|
[37] |
Blackstone BN, Malara MM, Baumann ME, et al.Laser micropatterning promotes rete ridge formation and enhanced engineered skin strength without increased inflammation[J].Bioengineering(Basel), 2023, 10(7):861.
|
[38] |
Baltazar T,Jiang B,Moncayo A,et al.3D bioprinting of an implantable xeno-free vascularized human skin graft[J].Bioeng Transl Med, 2023, 8(1):e10324.
|
[39] |
Li M, Sun L, Liu Z, et al.3D bioprinting of heterogeneous tissue-engineered skin containing human dermal fibroblasts and keratinocytes[J].Biomateri Sci,2023,11(7):2461-2477.
|
[40] |
Kim BS, Lee JS, Gao G, et al.Direct 3D cell-printing of human skin with functional transwell system[J].Biofabrication,2017,9(2):025034.
|
[41] |
Kim BS, Kwon YW, Kong JS, et al.3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink:a step towards advanced skin tissue engineering[J].Biomaterials, 2018, 168:38-53.
|
[42] |
Cubo N,Garcia M,Del Cañizo JF,et al.3D bioprinting of functional human skin:production and in vivo analysis[J].Biofabrication,2016,9(1):015006.
|
[43] |
Choudhury S, Das A.Advances in generation of threedimensional skin equivalents:pre-clinical studies to clinical therapies[J].Cytotherapy, 2021, 23(1):1-9.
|
[44] |
Admane P, Gupta AC, Jois P, et al.Direct 3D bioprinted fullthickness skin constructs recapitulate regulatory signaling pathways and physiology of human skin[J].Bioprinting, 2019,15:e00051.
|
[45] |
Ma J,Wu J,Zhang H,et al.3D printing of diatomite incorporated composite scaffolds for skin repair of deep burn wounds[J].Int J Bioprinting,2022,8(3):580.
|
[46] |
Ma J,Qin C,Wu J,et al.3D printing of strontium silicate microcylinder-containing multicellular biomaterial inks for vascularized skin regeneration[J].Adv Healthc Mater,2021,10(16):2100523.
|