切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2025, Vol. 20 ›› Issue (03) : 271 -275. doi: 10.3877/cma.j.issn.1673-9450.2025.03.014

综述

巨噬细胞向肌成纤维细胞转分化在纤维化疾病中作用的研究进展
黄洲龙1, 张金丽1, 周日兴1, 于昊1, 张志1,()   
  1. 1. 510220 广州, 暨南大学附属广州红十字会医院烧伤整形科
  • 收稿日期:2025-02-10 出版日期:2025-06-01
  • 通信作者: 张志

A review of macrophage-myofibroblast transformation in fibrotic diseases

Zhoulong Huang1, Jinli Zhang1, Rixing Zhou1, Hao Yu1, Zhi Zhang1,()   

  1. 1. Department of Burn and Plastic Surgery,Guangzhou Red Cross Hospital of Jinan University,Guangzhou 510220,China
  • Received:2025-02-10 Published:2025-06-01
  • Corresponding author: Zhi Zhang
引用本文:

黄洲龙, 张金丽, 周日兴, 于昊, 张志. 巨噬细胞向肌成纤维细胞转分化在纤维化疾病中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 271-275.

Zhoulong Huang, Jinli Zhang, Rixing Zhou, Hao Yu, Zhi Zhang. A review of macrophage-myofibroblast transformation in fibrotic diseases[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2025, 20(03): 271-275.

巨噬细胞-肌成纤维细胞转分化(MMT)是指在特定的炎症或损伤微环境中,巨噬细胞向肌成纤维细胞(MFB)转分化的病理过程。近年,研究发现MMT是纤维化疾病进展的关键机制,其调控涉及细胞间的相互作用和信号转导通路的激活。本文综述了MMT在肾、心脏、肺等器官纤维化疾病中的分子机制和潜在治疗靶点,以期为纤维化疾病的机制研究和靶向治疗提供新方向。

Macrophage-myofibroblast transformation(MMT) refers to pathological process in which macrophages transdifferentiate into myofibroblast (MFB) in specific inflammatory or injury microenvironments.Recent studies have identified MMT as a significant biological phenomenon in fibrotic diseases, involving intricate cellular interactions and activation of diverse signaling pathways.This article reviews the molecular mechanisms and potential therapeutic targets of MMT in fibrotic diseases of organs such as the kidney, heart,and lung, with the aim of providing new directions for the mechanistic research and targeted treatment of fibrotic diseases.

[1]
Zhao M, Wang L, Wang M, et al.Targeting fibrosis, mechanisms and cilinical trials[J].Signal Transduct Target Ther, 2022,7(1):206.
[2]
Rosenbloom J, Macarak E, Piera-Velazquez S, et al.Human fibrotic diseases: current challenges in fibrosis research[J].Methods Mol Biol, 2017,1627:1-23.
[3]
Qiu Z, Zhong Z, Zhang Y, et al.Human umbilical cord mesenchymal stem cell-derived exosomal miR-335-5p attenuates the inflammation and tubular epithelial-myofibroblast transdifferentiation of renal tubular epithelial cells by reducing ADAM19 protein levels[J].Stem Cell Res Ther,2022,13(1):373.
[4]
Nikolic-Paterson DJ,Wang S,Lan HY.Macrophages promote renal fibrosis through direct and indirect mechanisms[J].Kidney Int Suppl(2011),2014,4(1):34-38.
[5]
Xiong Y,Chang Y,Hao J, et al.Eplerenone attenuates fibrosis in the contralateral kidney of UUO rats by preventing macrophage-tomyofibroblast transition[J].Front Pharmacol,2021,12:620433.
[6]
Tang PC, Chung JY, Xue VW, et al.Smad3 promotes cancerassociated fibroblasts generation via macrophage-myofibroblast transition[J].Adv Sci (Weinh),2022,9(1):e2101235.
[7]
Meng X, Wang S, Huang X, et al.Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis[J].Cell Death Dis, 2016,7(12):e2495.
[8]
Chen S,Saeed AFUH,Liu Q,et al.Macrophages in immunoregulation and therapeutics[J].Signal Transduct Target Ther,2023,8(1):207.
[9]
Mahdavian Delavary B,van der Veer WM,van Egmond M,et al.Macrophages in skin injury and repair[J].Immunobiology, 2011,216(7):753-762.
[10]
Tang PM,Nikolic-Paterson DJ, Lan HY.Macrophages: versatile players in renal inflammation and fibrosis[J].Nat Rev Nephrol,2019,15(3):144-158.
[11]
Wang Y,Jiang H,Pan J,et al.Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury[J].J Am Soc Nephrol,2017,28(7):2053-2067.
[12]
Fuchs AL,Costello SM,Schiller SM,et al.Primary human M2 macrophage subtypes are distinguishable by aqueous metabolite profiles[J].Int J Mol Sci, 2024,25(4):2407.
[13]
Luo L,Wang S,Hu Y,et al.Precisely regulating M2 subtype macrophages for renal fibrosis resolution[J].ACS Nano, 2023,17(22):22508-22526.
[14]
Ruiz-Ortega M,Rayego-Mateos S,Lamas S,et al.Targeting the progression of chronic kidney disease[J].Nat Rev Nephrol,2020,16(5):269-288.
[15]
Wei J,Xu Z,Yan X.The role of the macrophage-to-myofibroblast transition in renal fibrosis[J].Front Immunol, 2022,13:934377.
[16]
Zeng H,Gao Y,Yu W,et al.Pharmacological inhibition of sting/tbk1 signaling attenuates myeloid fibroblast activation and macrophage to myofibroblast transition in renal fibrosis[J].Front Pharmacol, 2022,13:940716.
[17]
Yao Q,Zheng X,Zhang X,et al.METTL3 potentiates M2 macrophage-driven MMT to aggravate renal allograft fibrosis via the TGF-beta1/Smad3 pathway[J].Adv Sci( Weinh), 2025,12(11):e2412123.
[18]
Wang S,Meng X,Ng Y,et al.TGF-beta/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis[J].Oncotarget,2016,7(8):8809-8822.
[19]
Yu W, Song J, Chen S, et al.Myofibroblast-derived exosomes enhance macrophages to myofibroblasts transition and kidney fibrosi[sJ].Renal Failure,2024,46(1):2334406.
[20]
Tang P M, Zhou S, Li C, et al.The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring[J].Kidney Int,2018,93(1):173-187.
[21]
Zhou Y, Li Z, Yu S, et al.Iguratimod prevents renal fibrosis in unilateral ureteral obstruction model mice by suppressing M2 macrophage infiltration and macrophage-myofibroblast transition[J].Ren Fail, 2024,46(1):2327498.
[22]
Ninomiya K,Takahashi A,Fujioka Y, et al.Transforming growth factor-beta signaling enhances transdifferentiation of macrophages into smooth muscle-like cells[J].Hypertens Res, 2006,29(4):269-276.
[23]
Chen J,Tang Y,Zhong Y,et al.P2Y12 inhibitor clopidogrel inhibits renal fibrosis by blocking macrophage-to-myofibroblast transition[J].Mol Ther,2022,30(9):3017-3033.
[24]
Xiang T,Wang X,Huang S,et al.Inhibition of PKM2 by shikonin impedes TGF-beta1 expression by repressing histone lactylation to alleviate renal fibrosis[J].Phytomedicine,2024,136:156324.
[25]
Feng Y,Guo F,Mai H, et al.Pterostilbene, a bioactive component of blueberries, alleviates renal interstitial fibrosis by inhibiting macrophage-myofibroblast transition[J].Am J Chin Med, 2020,48(7):1715-1729.
[26]
Xu L,Jiang H, Xie J, et al.Mannan-binding lectin ameliorates renal fibrosis by suppressing macrophage-to-myofibroblast transition[J].Heliyon, 2023,9(11):e21882.
[27]
Fan Z,Guan J.Antifibrotic therapies to control cardiac fibrosis[J].Biomater Res,2016,20:13.
[28]
Zhang Y, Wu Y, Li M, et al.Identification of macrophage driver genes in fibrosis caused by different heart diseases based on omics integration[J].J Transl Med,2024,22(1):839.
[29]
Liu K, Jin H, Tang M, et al.Lineage tracing clarifies the cellular origin of tissue-resident macrophages in the developing hear[tJ].J Cell Biol, 2022,221(6):e202108093.
[30]
Revelo XS,Parthiban P,Chen C, et al.Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis[J].Circ Res, 2021,129(12):1086-1101.
[31]
Shen S, Zhang M, Wang X, et al.Single-cell RNA sequencing reveals S100a9hi macrophages promote the transition from acute inflammation to fibrotic remodeling after myocardial ischemiareperfusion[J].Theranostics,2024,14(3):1241-1259.
[32]
Zhuang T,Chen M,Wu R,et al.ALKBH5-mediated m6A modification of IL-11 drives macrophage-to-myofibroblast transition and pathological cardiac fibrosis in mice[J].Nat Commun, 2024,15(1):1995.
[33]
Cho HH,Rhee S,Cho DI,et al.IKKepsilon-deficient macrophages impede cardiac repair after myocardial infarction by enhancing the macrophage-myofibroblast transition[J].Exp Mol Med,2024,56(9):2052-2064.
[34]
Geng F,Xu J,Ren X,et al.Effect of macrophage-to-myofibroblast transition on silicosis[J].Animal Model Exp Med,2025,8(2):363-371.
[35]
Peng Y, Mei S, Qi X, et al.PGC-1α mediates migrasome secretion accelerating macrophage-myofibroblast transition and contributing to sepsis-associated pulmonary fibrosis[J].Exp Mol Med, 2025,57(4):759-774.
[36]
Liu H,Guan Q,Zhao P,et al.TGF-beta-induced CCR8 promoted macrophage transdifferentiation into myofibroblast-like cells[J].Exp Lung Res, 2022:1-14.
[37]
Geng F, Zhao L, Cai Y, et al.Quercetin alleviates pulmonary fibrosis in silicotic mice by inhibiting macrophage transition and TGF-β-Smad2/3 pathway[J].Curr Issues Mol Biol,2023,45(4):3087-3101.
[38]
Evans S, Butler JR, Mattila JT, et al.Systems biology predicts that fibrosis in tuberculous granulomas may arise through macrophageto-myofibroblast transformation[J].PLOS Computational Biology,2020,16(12):e1008520.
[39]
Little K,Llorián-Salvador M,Tang M,et al.Macrophage to myofibroblast transition contributes to subretinal fibrosis secondary to neovascular age-related macular degeneration[J].J Neuroinflammation,2020,17(1):355.
[40]
Yi C,Liu J,Deng W,et al.Macrophage elastase (MMP12)critically contributes to the development of subretinal fibrosis[J].J Neuroinflammation,2022,19(1):78.
[41]
Che Y,Chien Y,Zhu Y,et al.GSDMD-dependent neutrophil extracellular traps mediate portal vein thrombosis and associated fibrosis in cirrhosis[J].Int J Mol Sci,2024,25(16):9099.
[42]
Wang W,Xiao D,Lin L,et al.Antifibrotic effects of tetrahedral framework nucleic acids by inhibiting macrophage polarization and macrophage-myofibroblast transition in bladder remodeling[J].Adv Healthc Mater,2023,12(11):e2203076.
[43]
Tan Q,Xiang C,Zhang H,et al.YAP promotes fibrosis by regulating macrophage to myofibroblast transdifferentiation and M2 polarization in chronic pancreatiti[sJ].Int Immunopharmacol,2025,148:114087.
[44]
Sun J,Shi M,Mei R,et al.LincR-PPP2R5C regulates the PP2A signaling pathway in the macrophage-myofibroblast transition in a mouse model of epidural fibrosis[J].Mol Immunol,2025,177:85-95.
[45]
Zeng J,Du X,Lu Q,et al.Inhibition of GDNF-driven macrophage-tomyofibroblast transition protects against colitis-associated intestinal fibrosis[J].Inflammation,2024.
[46]
Jia Y,Qin Y,Yuan F,et al.Macrophage-to-myofibroblast transition contributes to cutaneous scarring formation through the tgf-beta/smad3 signaling pathways[J].Cell Biol Int, 2025,49(5):494-507.
[1] 张霞, 冯娅娆, 罗寰, 杨金良, 张斌, 郑学军. 尪痹胶囊联合来氟米特对类风湿关节炎炎症指标的影响[J/OL]. 中华关节外科杂志(电子版), 2025, 19(01): 55-64.
[2] 鲁嘉懿, 唐菲, 卢芬, 陶于洪. 儿童系统性红斑狼疮相关性急性胰腺炎的临床诊疗及预后分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(06): 635-643.
[3] 谌莉, 冉永红, 傅仕艳, 李文润, 冉新泽, 郝玉徽. 放射性肺纤维化细胞和分子机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 265-270.
[4] 陈浩, 林梁, 邹来宾, 郭胜蓝. 成石饮食诱发胆结石及肝损伤机制的研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(01): 42-47.
[5] 李杰, 冉永红, 郝玉徽. miR-21 靶向环腺苷酸应答元件结合蛋白样蛋白2 加重放射性肺纤维化的作用机制[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 220-225.
[6] 岳雅丽, 史学军, 田瑶. 血清LMR、DCN 在肺间质纤维化患者抗纤维化治疗中的变化及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 140-144.
[7] 顾佩玉, 曹磊, 刘澄英, 曹励强, 李杰, 王晓雯. IR-780 调节糖酵解抑制特发性肺纤维化的机制分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 8-14.
[8] 刘洪千, 马琦, 陈娟娟, 王成军, 武玲玲, 冯喜英. miR-150-5p 在青海地区结核分枝杆菌感染患者血清中的表达及意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 42-47.
[9] 马苗苗, 次苗苗, 寇振宇, 王斌锋, 和建武. 儿童急性下呼吸道感染血清hBD-2、MIP-1α、IL-13 与病情严重程度的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1008-1012.
[10] 向青, 龚道辉, 赵才林, 张硕辛, 秦蘅, 刘禹. 巨噬细胞参与免疫调节机制在肺动脉高压中的影响及相关纳米材料的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1027-1030.
[11] 陈用来, 谌莉, 李勇, 傅仕艳, 冉永红, 赵雅贞, 郝玉徽. 放射性肺纤维化的研究近展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1042-1047.
[12] 张睿敏, 董哲毅, 王倩, 陈香美. 肾小管间质纤维化生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 91-96.
[13] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[14] 张笑闻, 李菁, 管生, 范梦妍, Mateus TN Mach, 万佳鑫, 林日金, 刘爱华, 王蕾, 张志科. 脑动脉瘤光学相干断层扫描表现二例[J/OL]. 中华介入放射学电子杂志, 2025, 13(01): 93-96.
[15] 门航, 厉周, 韩帅. 肥胖与2 型糖尿病研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2025, 11(01): 62-69.
阅读次数
全文


摘要