[1] |
Chen Z, Wu Z, Ning W.Advances in molecular mechanisms and treatment of radiation-induced pulmonary fibrosis [J].Transl Oncol, 2019, 12: 162-169.
|
[2] |
Wang M, Xu S, Zhu H.Radiation recall pneumonitis induced by sintilimab: a case report and literature review [J].Front Immunol,2022, 13: 823767.
|
[3] |
Suri GS, Kaur G, Jha CK, et al.Understanding idiopathic pulmonary fibrosis - Clinical features, molecular mechanism and therapies[ J].Exp Gerontol, 2021, 153: 111473.
|
[4] |
Deutsch E, Meziani L.Radiation-induced pulmonary fibrosis: new potential targets[ J].Cancer Radiother, 2023, 27(6-7): 491-493.
|
[5] |
Ruaro B, Salton F, Braga L, et al.The history and mystery of alveolar epithelial type Ⅱ cells: focus on their physiologic and pathologic role in lung[ J].Int J Mol Sci, 2021, 22(5): 2566.
|
[6] |
Liu K, Meng X, Liu Z, et al.Tracing the origin of alveolar stem cells in lung repair and regeneration[ J].Cell, 2024, 187( 10):2428-2445.e20.
|
[7] |
Wang Y, Wang L, Ma S, et al.Repair and regeneration of the alveolar epithelium in lung injury[ J].Faseb J, 2024, 38(8): e23612.
|
[8] |
Parimon T, Yao C, Stripp BR, et al.Alveolar epithelial type Ⅱcells as drivers of lung fibrosis in idiopathic pulmonary fibrosis[ J].Int J Mol Sci, 2020, 21(7): 2269.
|
[9] |
Wang P, Yan Z, Zhou PK, et al.The promising therapeutic approaches for radiation-induced pulmonary fibrosis: targeting radiation-induced mesenchymal transition of alveolar type Ⅱepithelial cells[ J].Int J Mol Sci, 2022, 23(23) :15014.
|
[10] |
Cui T, Wangpaichitr M, Schally AV, et al.Alveolar epithelial cell growth hormone releasing hormone receptor in alveolar epithelial inflammation[ J].Exp Lung Res, 2023, 49(1): 152-164.
|
[11] |
Aegerter H, Lambrecht BN, Jakubzick CV.Biology of lung macrophages in health and disease[ J].Immunity, 2022, 55(9):1564-1580.
|
[12] |
Li M, Liu P, Ke Y, et al.Research progress on macrophage in radiation induced lung injury[ J].Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 49(5): 623-628.
|
[13] |
Ni J, Guo T, Zhou Y, et al.STING signaling activation modulates macrophage polarization via CCL2 in radiation-induced lung injury[ J].J Transl Med, 2023, 21(1): 590.
|
[14] |
Tabraue C, Lara PC, De Mirecki-garrido M, et al.LXR signaling regulates macrophage survival and inflammation in response to ionizing radiation[ J].Int J Radiat Oncol Biol Phys, 2019, 104(4):913-923.
|
[15] |
Wynn TA, Vannella KM.Macrophages in tissue repair,regeneration, and fibrosis[ J].Immunity, 2016, 44(3): 450-462.
|
[16] |
Kishore A, Petrek M.Roles of macrophage polarization and macrophage-derived miRNAs in pulmonary fibrosis [J].Front Immunol, 2021, 12: 678457.
|
[17] |
Zhang L, Wang Y, Wu GR, et al.Macrophages: friend or foe in idiopathic pulmonary fibrosis?[J].Respiratory Research,2018, 19(1): 170.
|
[18] |
Dong T, Chen X, Xu H, et al.Mitochondrial metabolism mediated macrophage polarization in chronic lung diseases[ J].Pharmacol Ther, 2022, 239: 108208.
|
[19] |
Chen YL, Li Y, He YJ, et al.Targeted lung therapy with rosmarinic acid encapsulated in PLGA microspheres for radiationinduced pulmonary fibrosis[ J].J Drug Deliv Sci Technol, 2024,96: 105710.
|
[20] |
Tang PC, Chung JY, Xue VW, et al.Smad3 promotes cancerassociated fibroblasts generation via macrophage-myofibroblast transition[ J].Adv Sci( Weinh), 2022, 9(1): e2101235.
|
[21] |
Cavgnero KJ, Gallo RL.Essential immune functions of fibroblasts in innate host defense[ J].Front Immunol, 2022, 13: 1058862.
|
[22] |
Zhao M, Wang L, Wang M, et al.Targeting fibrosis, mechanisms and cilinical trials[ J].Signal Transduct Target Ther, 2022, 7(1):206.
|
[23] |
Younesi FS, Miller AE, Barker TH, et al.Fibroblast and myofibroblast activation in normal tissue repair and fibrosis[ J].Nat Rev Mol Cell Biol, 2024, 25(8): 617-638.
|
[24] |
Talbott HE, Mascharak S, Griffin M, et al.Wound healing,fibroblast heterogeneity, and fibrosis[ J].Cell Stem Cell, 2022,29(8): 1161-1180.
|
[25] |
Buechler MB, Fu W, Turley SJ.Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer[ J].Immunity, 2021,54(5): 903-915.
|
[26] |
Lan HY.Diverse roles of TGF-β/Smads in renal fibrosis and inflammation[ J].Int J Biol Sci, 2011, 7(7): 1056-1067.
|
[27] |
Morikawa M, Derynck R, Miyazono K.TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology[ J].Cold Spring Harb Perspect Biol, 2016, 8(5): a021873.
|
[28] |
Larson C, Oronsky B, Carter CA, et al.TGF-beta: a master immune regulator[ J].Expert Opin Ther Targets, 2020, 24(5):427-438.
|
[29] |
Deng Z, Fan T, Xiao C, et al.TGF-β signaling in health,disease, and therapeutics [J].Signal Transduct Target Ther,2024, 9(1): 61.
|
[30] |
Hanson I, Pitman KE, Edin NFJ.The role of TGF-β3 in radiation response[ J].Int J Mol Sci, 2023, 24(8): 7614
|
[31] |
Massagué J, Seoane EJ, Wotton D.Smad transcription factors[ J].Genes Dev, 2005, 19(23): 2783-2810.
|
[32] |
Lee JH, Sánchez-rivera FJ, He L, et al.TGF-β and RAS jointly unmask primed enhancers to drive metastasis[ J].Cell, 2024,187(22):6182-6199.e29.
|
[33] |
Meng XM, Nikolic-paterson DJ, Lan HY.TGF-β: the master regulator of fibrosis[ J].Nat Rev Nephrol, 2016, 12(6): 325-338.
|
[34] |
Verma S, Dutta A, Dahiya A, et al.Quercetin-3-Rutinoside alleviates radiation-induced lung inflammation and fibrosis via regulation of NF-κB/TGF-β1 signaling [J].Phytomedicine,2022, 99: 154004.
|
[35] |
Wang S, Li J, He Y, et al.Protective effect of melatonin entrapped PLGA nanoparticles on radiation-induced lung injury through the miR-21/TGF-β1/Smad3 pathway[ J].Int J Pharm,2021, 602: 120584.
|
[36] |
Shen L, Fu S, Chen Y, et al.Mannosylated polydopamine nanoparticles alleviate radiation- induced pulmonary fibrosis by targeting M2 macrophages and inhibiting the TGF-β1/Smad3 signaling pathway [J].Colloids Surf B Biointerfaces,2023, 227: 113353.
|
[37] |
Distler JHW, Györfi AH, Ramanujam M, et al.Shared and distinct mechanisms of fibrosis[ J].Nat Rev Rheumatol, 2019,15(12): 705-730.
|
[38] |
Ersahin T, Tuncbag N, Cetin-atalay R.The PI3K/AKT/mTOR interactive pathway[ J].Mol Biosyst, 2015, 11(7): 1946-1954.
|
[39] |
Yang J, Nie J, Ma X, et al.Targeting PI3K in cancer:mechanisms and advances in clinical trials [J].Mol Cancer,2019, 18(1): 26.
|
[40] |
Manning BD, Toker A.AKT/PKB signaling: navigating the network[ J].Cell, 2017, 169(3): 381-405.
|
[41] |
Gupta S, Kumar M, Chaudhuri S, et al.The non-canonical nuclear functions of key players of the PI3K-AKT-MTOR pathway[ J].J Cell Physiol, 2022, 237(8): 3181-3204.
|
[42] |
Xiu AY, Ding Q, Li Z, et al.Doxazosin attenuates liver fibrosis by inhibiting autophagy in hepatic stellate cells via activation of the PI3K/Akt/mTOR signaling pathway[ J].Drug Des Devel Ther,2021, 15: 3643-3659.
|
[43] |
Wang J, Hu K, Cai X, et al.Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis[ J].Acta Pharm Sin B,2022, 12(1): 18-32.
|
[44] |
杨依,陈凡,冯瑞兴,等.通过PI3K/Akt信号通路调控p21 对放射性肺损伤的防护作用 [J].中国高原医学与生物学杂志,2023, 44(3): 172-177.
|
[45] |
Laddha AP, Kulkarni YA.VEGF and FGF-2: promising targets for the treatment of respiratory disorders[ J].Respir Med, 2019,156: 33-46.
|
[46] |
Ferrara N, Gerber HP, Lecouter J.The biology of VEGF and its receptors[ J].Nat Med, 2003, 9(6): 669-676.
|
[47] |
Sun Y, Liu WZ, Liu T, et al.Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis[ J].J Recept Signal Transduct Res, 2015, 35(6): 600-604.
|
[48] |
Park JI.MAPK-ERK Pathway[ J].Int J Mol Sci, 2023, 24(11):9666.
|
[49] |
Qu H, Liu L, Liu Z, et al.Blocking TBK1 alleviated radiationinduced pulmonary fibrosis and epithelial-mesenchymal transition through Akt-Erk inactivation[ J].Exp Mol Med, 2019, 51(4): 1-17.
|
[50] |
Ying H, Zhou C, Hang Q, et al.The preventive effect of endostar on radiation-induced pulmonary fibrosis [J].Curr Mol Med,2024, 24(5): 610-619.
|
[51] |
Zheng J, Wu J, Xie L, et al.Paclitaxel aggravating radiationinduced pulmonary fibrosis is associated with the down-regulation of the negative regulatory function of Spry2[ J].J Pharmacol Exp Ther, 2024, 389(2): 197-207.
|
[52] |
Yang Q, Zhanng P, Liu T, et al.Magnesium isoglycyrrhizinate ameliorates radiation-induced pulmonary fibrosis by inhibiting fibroblast differentiation via the p38MAPK/Akt/Nox4 pathway[ J].Biomed Pharmacother, 2019, 115: 108955.
|
[53] |
黄婷,邓博,程志强.平肺口服液对急性放射性肺损伤大鼠肺损伤及p38 MAPK/Nrf2/HO-1信号通路的影响[ J].现代中西医结合杂志,2022,31(21): 2934-2938,2984.
|
[54] |
张广辉,亓润智,王青,等.基于p38 MAPK/NF-κB通路探究沙参桔梗汤治疗放射性肺损伤的效应机制[J].中华中医药杂志,2023, 38(11): 5197-5202.
|
[55] |
Steele H, Cheng J, Willicut A, et al.TNF superfamily control of tissue remodeling and fibrosis[J].Front Immunol, 2023, 14:1219907.
|
[56] |
Kalliolias GD, Ivashkiv LB.TNF biology, pathogenic mechanisms and emerging therapeutic strategies [J].Nat Rev Rheumatol,2016, 12(1): 49-62.
|
[57] |
Lawrence T.The nuclear factor NF-kappaB pathway in inflammation[ J].Cold Spring Harb Perspect Biol, 2009, 1(6):a001651.
|
[58] |
Sun SC.Non-canonical NF-κB signaling pathway[ J].Cell Res,2011, 21(1): 71-85.
|
[59] |
Yu H, Lin L, Zhang Z, et al.Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study [J].Signal Transduct Target Ther, 2020, 5(1): 209.
|
[60] |
Chen J, Chen ZJ.Regulation of NF-κB by ubiquitination[ J].Curr Opin Immunol, 2013, 25(1): 4-12.
|
[61] |
Luedde T, Schwabe RF.NF-κB in the liver-linking injury,fibrosis and hepatocellular carcinoma[ J].Nat Rev Gastroenterol Hepatol, 2011, 8(2): 108-118.
|
[62] |
Wang D, Liu Z, Yan Z, et al.MiRNA-155-5p inhibits epitheliumto-mesenchymal transition (EMT) by targeting GSK-3β during radiation-induced pulmonary fibrosis[ J].Arch Biochem Biophys,2021, 697: 108699.
|
[63] |
武忠宝,徐莹,柳云恩,等.基于蛋白组学探讨放射性肺损伤致病机制[ J].临床军医杂志,2024, 52(7): 661-665,670.
|
[64] |
张旭东,刘浩昂,王志浩,等.Smad3通过p38/MAPK信号通路调控细胞自噬及凋亡促进胰腺癌进程 [J].陆军军医大学学报,2022, 44(19): 1968-1978.
|
[65] |
Suwanabol PA, Seedial SM, Zhang F, et al.TGF-β and Smad3 modulate PI3K/Akt signaling pathway in vascular smooth muscle cells[ J].Am J Physiol Heart Circ Physiol, 2012, 302(11):H2211-H2219.
|