| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
Liu D, Huang SY, Sun JH, et al. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options[J]. Mil Med Res, 2022, 9: 56. DOI: 10.1186/s40779-022-00422-y.
|
| [5] |
|
| [6] |
Wang Z, Wang Z. The role of macrophages polarization in sepsis-induced acute lung injury[J]. Front Immunol, 2023, 14: 1209438. DOI: 10.3389/fimmu.2023.1209438.
|
| [7] |
Peace CG, O'Neill LAJ. The role of itaconate in host defense and inflammation[J]. J Clin Invest, 2022, 132(2): e148548. DOI: 10.1172/JCI148548.
|
| [8] |
Luo L, Zhuang X, Fu L, et al. The role of the interplay between macrophage glycolytic reprogramming and NLRP3 inflammasome activation in acute lung injury/acute respiratory distress syndrome[J]. Clin Transl Med, 2024, 14(12): e70098. DOI: 10.1002/ctm2.70098.
|
| [9] |
Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis[J]. Semin Immunopathol, 2017, 39(5): 517-528. DOI: 10.1007/s00281-017-0639-8.
|
| [10] |
|
| [11] |
Weichhart T, Hengstschläger M, Linke M. Regulation of innate immune cell function by mTOR[J]. Nat Rev Immunol, 2015, 15(10): 599-614. DOI: 10.1038/nri3901.
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
Feng X, Guan W, Zhao Y, et al. Dexmedetomidine ameliorates lipopolysaccharide-induced acute kidney injury in rats by inhibiting inflammation and oxidative stress via the GSK-3β/Nrf2 signaling pathway[J]. J Cell Physiol, 2019, 234(10): 18994-19009. DOI: 10.1002/jcp.28539.
|
| [21] |
|
| [22] |
Li J, Zhai X, Sun X, et al. Metabolic reprogramming of pulmonary fibrosis[J]. Front Pharmacol, 2022, 13: 1031890. DOI: 10.3389/fphar.2022.1031890.
|
| [23] |
Cheng S, Li Y, Sun X, et al. The impact of glucose metabolism on inflammatory processes in sepsis-induced acute lung injury[J]. Front Immunol, 2024, 15: 1508985. DOI: 10.3389/fimmu.2024.1508985.
|
| [24] |
El Kasmi KC, Stenmark KR. Contribution of metabolic reprogramming to macrophage plasticity and function[J]. Semin Immunol, 2015, 27(4): 267-275. DOI: 10.1016/j.smim.2015.09.001.
|
| [25] |
Michaeloudes C, Bhavsar PK, Mumby S, et al. Role of metabolic reprogramming in pulmonary innate immunity and its impact on lung diseases[J]. J Innate Immun, 2020, 12(1): 31-46. DOI: 10.1159/000504344.
|
| [26] |
|
| [27] |
|
| [28] |
Ma J, Wei K, Liu J, et al. Glycogen metabolism regulates macrophage-mediated acute inflammatory responses[J]. Nat Commun, 2020, 11: 1769. DOI: 10.1038/s41467-020-15636-8.
|
| [29] |
|
| [30] |
Bueno M, Calyeca J, Rojas M, et al. Mitochondria dysfunction and metabolic reprogramming as drivers of idiopathic pulmonary fibrosis[J]. Redox Biol, 2020, 33: 101509. DOI: 10.1016/j.redox.2020.101509.
|
| [31] |
Wculek SK, Heras-Murillo I, Mastrangelo A, et al. Oxidative phosphorylation selectively orchestrates tissue macrophage homeostasis[J]. Immunity, 2023, 56(3): 516-530.e9. DOI: 10.1016/j.immuni.2023.01.011.
|
| [32] |
Das UN. Serum adipocyte fatty acid-binding protein in the critically ill[J]. Crit Care, 2013, 17(2): 121. DOI: 10.1186/cc12517.
|
| [33] |
Piccioni A, Spagnuolo F, Candelli M, et al. The gut microbiome in sepsis: from dysbiosis to personalized therapy[J]. J Clin Med, 2024, 13(20): 6082. DOI: 10.3390/jcm13206082.
|
| [34] |
Li R, Li X, Zhao J, et al. Mitochondrial STAT3 exacerbates LPS-induced sepsis by driving CPT1a-mediated fatty acid oxidation[J]. Theranostics, 2022, 12(2): 976-998. DOI: 10.7150/thno.63751.
|
| [35] |
Gao XL, Li JQ, Dong YT, et al. Upregulation of microRNA-335-5p reduces inflammatory responses by inhibiting FASN through the activation of AMPK/ULK1 signaling pathway in a septic mouse model[J]. Cytokine, 2018, 110: 466-478. DOI: 10.1016/j.cyto.2018.05.016.
|
| [36] |
Kim YC, Lee SE, Kim SK, et al. Toll-like receptor mediated inflammation requires FASN-dependent MYD88 palmitoylation[J]. Nat Chem Biol, 2019, 15(9): 907-916. DOI: 10.1038/s41589-019-0344-0.
|
| [37] |
Dalli J, Colas RA, Quintana C, et al. Human sepsis eicosanoid and pro-resolving lipid mediator temporal profiles: correlations with survival and clinical outcomes[J]. Crit Care Med, 2017, 45(1): 58-68. DOI: 10.1097/CCM.0000000000002014.
|
| [38] |
Monteiro APT, Soledade E, Pinheiro CS, et al. Pivotal role of the 5-lipoxygenase pathway in lung injury after experimental sepsis[J]. Am J Respir Cell Mol Biol, 2014, 50(1): 87-95. DOI: 10.1165/rcmb.2012-0525OC.
|
| [39] |
Spiller F, Oliveira Formiga R, Fernandes da Silva Coimbra J, et al. Targeting nitric oxide as a key modulator of sepsis, arthritis and pain[J]. Nitric Oxide, 2019, 89: 32-40. DOI: 10.1016/j.niox.2019.04.011.
|
| [40] |
Zhang JX, Xu WH, Xing XH, et al. ARG1 as a promising biomarker for sepsis diagnosis and prognosis: evidence from WGCNA and PPI network[J]. Hereditas, 2022, 159: 27. DOI: 10.1186/s41065-022-00240-1.
|
| [41] |
Zhu Y, Chen X, Lu Y, et al. Glutamine mitigates murine burn sepsis by supporting macrophage M2 polarization through repressing the SIRT5-mediated desuccinylation of pyruvate dehydrogenase[J]. Burns Trauma, 2022, 10: tkac041. DOI: 10.1093/burnst/tkac041.
|
| [42] |
Xie T, Lv T, Zhang T, et al. Interleukin-6 promotes skeletal muscle catabolism by activating tryptophan–indoleamine 2,3-dioxygenase 1–kynurenine pathway during intra-abdominal sepsis[J]. J Cachexia Sarcopenia Muscle, 2023, 14(2): 1046-1059. DOI: 10.1002/jcsm.13193.
|
| [43] |
Liu T, Wen Z, Shao L, et al. ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1α ubiquitination in sepsis[J]. Clin Immunol, 2023, 254: 109698. DOI: 10.1016/j.clim.2023.109698.
|
| [44] |
Tan C, Gu J, Li T, et al. Inhibition of aerobic glycolysis alleviates sepsis-induced acute kidney injury by promoting lactate/sirtuin 3/AMPK-regulated autophagy[J]. Int J Mol Med, 2021, 47(3): 19. DOI: 10.3892/ijmm.2021.4852.
|
| [45] |
Steiner JL, Crowell KT, Kimball SR, et al. Disruption of REDD1 gene ameliorates sepsis-induced decrease in mTORC1 signaling but has divergent effects on proteolytic signaling in skeletal muscle[J]. Am J Physiol Endocrinol Metab, 2015, 309(12): E981-E994. DOI: 10.1152/ajpendo.00264.2015.
|
| [46] |
Gandhirajan A, Roychowdhury S, Vachharajani V. Sirtuins and sepsis: cross talk between redox and epigenetic pathways[J]. Antioxidants, 2021, 11(1): 3. DOI: 10.3390/antiox11010003.
|
| [47] |
Crossland H, Constantin-Teodosiu D, Greenhaff PL. The regulatory roles of PPARs in skeletal muscle fuel metabolism and inflammation: impact of PPAR agonism on muscle in chronic disease, contraction and sepsis[J]. Int J Mol Sci, 2021, 22(18): 9775. DOI: 10.3390/ijms22189775.
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
Horton RA, Knowles RG, Titheradge MA. Endotoxin causes reciprocal changes in hepatic nitric oxide synthesis, gluconeogenesis, and flux through phosphoenolpyruvate carboxykinase[J]. Biochem Biophys Res Commun, 1994, 204(2): 659-665. DOI: 10.1006/bbrc.1994.2510.
|
| [52] |
|
| [53] |
|
| [54] |
Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury[J]. Front Immunol, 2020, 11: 1722. DOI: 10.3389/fimmu.2020.01722.
|
| [55] |
Gong D, Liu X, Wu P, et al. Rab26 alleviates sepsis-induced immunosuppression as a master regulator of macrophage ferroptosis and polarization shift[J]. Free Radic Biol Med, 2024, 212: 271-283. DOI: 10.1016/j.freeradbiomed.2023.12.046.
|
| [56] |
Chen F, Wang N, Liao J, et al. Esculetin rebalances M1/M2 macrophage polarization to treat sepsis-induced acute lung injury through regulating metabolic reprogramming[J]. J Cell Mol Med, 2024, 28(21): e70178. DOI: 10.1111/jcmm.70178.
|
| [57] |
Lu S, Li R, Deng Y, et al. GDF15 ameliorates sepsis-induced lung injury via AMPK-mediated inhibition of glycolysis in alveolar macrophage[J]. Respir Res, 2024, 25(1): 201. DOI: 10.1186/s12931-024-02824-z.
|
| [58] |
Mainali R, Zabalawi M, Long D, et al. Dichloroacetate reverses sepsis-induced hepatic metabolic dysfunction[J]. eLife, 2021, 10: e64611. DOI: 10.7554/eLife.64611.
|
| [59] |
Pant BD, Ahuja A, Roychowdhury S, et al. Mitoquinol improves phagocytosis and glycolysis in ethanol-exposed macrophages via HIF-1α-PFKP axis[J]. J Immunol, 2025: vkaf078. DOI: 10.1093/jimmun/vkaf078.
|
| [60] |
Rademann P, Weidinger A, Drechsler S, et al. Mitochondria-targeted antioxidants SkQ1 and MitoTEMPO failed to exert a long-term beneficial effect in murine polymicrobial sepsis[J]. Oxid Med Cell Longev, 2017, 2017: 6412682. DOI: 10.1155/2017/6412682.
|
| [61] |
Dong T, Chen X, Xu H, et al. Mitochondrial metabolism mediated macrophage polarization in chronic lung diseases[J]. Pharmacol Ther, 2022, 239: 108208. DOI: 10.1016/j.pharmthera.2022.108208.
|
| [62] |
Gao Y, Liu J, Li K, et al. Metformin alleviates sepsis-associated myocardial injury by enhancing AMP-activated protein kinase/mammalian target of rapamycin signaling pathway-mediated autophagy[J]. J Cardiovasc Pharmacol, 2023, 82(4): 308-317. DOI: 10.1097/FJC.0000000000001463.
|
| [63] |
Jin K, Ma Y, Manrique-Caballero CL, et al. Activation of AMP-activated protein kinase during sepsis/inflammation improves survival by preserving cellular metabolic fitness[J]. FASEB J, 2020, 34(5): 7036-7057. DOI: 10.1096/fj.201901900R.
|
| [64] |
Liu W, Guo J, Mu J, et al. Rapamycin protects sepsis-induced cognitive impairment in mouse hippocampus by enhancing autophagy[J]. Cell Mol Neurobiol, 2017, 37(7): 1195-1205. DOI: 10.1007/s10571-016-0449-x.
|
| [65] |
Cheng SC, Quintin J, Cramer RA, et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity[J]. Science, 2014, 345(6204): 1250684. DOI: 10.1126/science.1250684.
|
| [66] |
Li J, Zeng X, Yang F, et al. Resveratrol: potential application in sepsis[J]. Front Pharmacol, 2022, 13: 821358. DOI: 10.3389/fphar.2022.821358.
|
| [67] |
Poor TA, Morales-Nebreda L. Alveolar macrophages during inflammation: a balancing act[J]. Am J Respir Cell Mol Biol, 2023, 68(6): 608. DOI: 10.1165/rcmb.2023-0098ED.
|
| [68] |
|
| [69] |
Deng Z, Kalin GT, Shi D, et al. Nanoparticle delivery systems with cell-specific targeting for pulmonary diseases[J]. Am J Respir Cell Mol Biol, 2021, 64(3): 292-307. DOI: 10.1165/rcmb.2020-0306TR.
|