切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2016, Vol. 11 ›› Issue (02) : 122 -125. doi: 10.3877/cma.j.issn.1673-9450.2016.02.010

所属专题: 文献

综述

抗菌肽及其模拟物的临床应用研究进展
汤陈琪1, 李骏强1, 夏照帆1,()   
  1. 1. 200433 第二军医大学附属长海医院烧伤外科,全军烧伤研究所
  • 收稿日期:2015-12-04 出版日期:2016-04-01
  • 通信作者: 夏照帆
  • 基金资助:
    中国工程院咨询研究项目(2015-XY-26)

Current progress in clinical research of antimicrobial peptides and peptidomimetics

Chenqi Tang1, Junqiang Li1, Zhaofan Xia1,()   

  1. 1. Department of Burn Surgery, Institute of Burns, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
  • Received:2015-12-04 Published:2016-04-01
  • Corresponding author: Zhaofan Xia
  • About author:
    Corresponding author: Xia Zhaofan, Email:
引用本文:

汤陈琪, 李骏强, 夏照帆. 抗菌肽及其模拟物的临床应用研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2016, 11(02): 122-125.

Chenqi Tang, Junqiang Li, Zhaofan Xia. Current progress in clinical research of antimicrobial peptides and peptidomimetics[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2016, 11(02): 122-125.

抗菌肽,作为一种新型的抗生素替代药物,近年来得到了极大关注。本文概述了抗菌肽及其模拟物的抗菌特性及优势特点,着重阐述了其临床研究进展和临床应用面临的挑战。抗菌肽具有不同于传统抗生素的独特抗菌机制,能够杀灭多重耐药菌且不易诱导产生抗药性,数十种抗菌肽已进入了临床试验阶段,但是毒性作用、不稳定性及成本昂贵使其临床应用受到限制。针对上述缺陷,研究者尝试合理改造抗菌肽的结构,并着手研发抗菌肽模拟物。相信在未来,抗菌肽及其模拟物会在对抗耐药菌方面发挥重要的作用。

As potential alternatives to conventional antibiotics, antimicrobial peptides have attracted great attention in recent years. This review provides an overview of their characteristics and mechanisms of action, summarizes the current progress in clinical research and challenges in clinical utility. Antimicrobial peptides display robust activity against a wide variety of pathogens, including multidrug resistant bacteria, and are less susceptible to resistance development. Dozens of antimicrobial peptides are currently in various stages of clinical trials. However, some intrinsic drawbacks limit their clinical utility: toxicity, stability and manufacturing costs. Researchers have tried to modify the structure of antimicrobial peptides and worked on developing peptidomimetics. It is believed that antimicrobial peptides and peptidomimetics will play an important role against multidrug resistant bacteria in the future.

表1 进入临床研究的抗菌肽及其模拟物(部分)
[1]
彭代智,刘小玲,刘智勇,等. 烧伤患者2748株病原菌分布特点及耐药性分析[J]. 中华烧伤杂志,2012, 28(2): 87-95.
[2]
胡泉,柴家科,尹靓,等. 危重烧伤患者呼吸道细菌感染及耐药性分析[J/CD]. 中华损伤与修复杂志:电子版,2012, 7(1): 76-79.
[3]
黄晓元. 加强创面感染的防治[J/CD]. 中华损伤与修复杂志:电子版,2015, 10(5): 376-379.
[4]
Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design[J]. Nucleic Acids Res, 2009, 37(Database issue): D933-D937.
[5]
Eckert R. Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development[J]. Future Microbiol, 2011, 6(6): 635-651.
[6]
Gaspar D, Veiga AS, Castanho MA. From antimicrobial to anticancer peptides. A review[J]. Front Microbiol, 2013,4: 294.
[7]
Peters BM, Shirtliff ME, Jabra-Rizk MA. Antimicrobial peptides: primeval molecules or future drugs [J]. PLoS Pathog, 2010, 6(10): e1001067.
[8]
Steckbeck JD, Deslouches B, Montelaro RC. Antimicrobial peptides: new drugs for bad bugs [J]. Expert Opin Biol Ther, 2014, 14(1): 11-14.
[9]
Baltzer SA, Brown MH. Antimicrobial peptides: promising alternatives to conventional antibiotics[J]. J Mol Microbiol Biotechnol, 2011, 20(4): 228-235.
[10]
Hancock RE, Nijnik A, Philpott DJ. Modulating immunity as a therapy for bacterial infections[J]. Nat Rev Microbiol, 2012, 10(4): 243-254.
[11]
Mookherjee N, Hancock RE. Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections[J]. Cell Mol Life Sci, 2007, 64(7/8): 922-933.
[12]
史鹏伟,高艳彬,卢志阳,等. 抗菌肽LL-37对鲍曼不动杆菌生物膜的抑制作用[J]. 南方医科大学学报,2014, 34(3): 426-429.
[13]
Reffuveille F, de la Fuente-Núñez C, Mansour S, et al. A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms[J]. Antimicrob Agents Chemother, 2014, 58(9): 5363-5371.
[14]
Mercer DK, O′Neil DA. Peptides as the next generation of anti-infectives[J]. Future Med Chem, 2013, 5(3): 315-337.
[15]
Lipsky BA, Holroyd KJ, Zasloff M. Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream[J]. Clin Infect Dis, 2008, 47(12): 1537-1545.
[16]
Levin M, Quint PA, Goldstein B, et al. Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. rBPI21 Meningococcal Sepsis Study Group[J]. Lancet, 2000, 356(9234): 961-967.
[17]
Domingues MM, Santos NC, Castanho MA. Antimicrobial peptide rBPI21: a translational overview from bench to clinical studies[J]. Curr Protein Pept Sci, 2012, 13(7): 611-619.
[18]
Kang SJ, Park SJ, Mishig-Ochir T, et al. Antimicrobial peptides: therapeutic potentials[J]. Expert Rev Anti Infect Ther, 2014, 12(12): 1477-1486.
[19]
Fritsche TR, Rhomberg PR, Sader HS, et al. Antimicrobial activity of omiganan pentahydrochloride tested against contemporary bacterial pathogens commonly responsible for catheter-associated infections[J]. J Antimicrob Chemother, 2008, 61(5): 1092-1098.
[20]
Trotti A, Garden A, Warde P, et al. A multinational, randomized phase III trial of iseganan HCl oral solution for reducing the severity of oral mucositis in patients receiving radiotherapy for head-and-neck malignancy[J]. Int J Radiat Oncol Biol Phys, 2004, 58(3): 674-681.
[21]
Giles FJ, Rodriguez R, Weisdorf D, et al. A phase Ⅲ,randomized, double-blind, placebo-controlled, study of iseganan for the reduction of stomatitis in patients receiving stomatotoxic chemotherapy[J]. Leuk Res, 2004, 28(6): 559-565.
[22]
Elad S, Epstein JB, Raber-Durlacher J, et al. The antimicrobial effect of Iseganan HCl oral solution in patients receiving stomatotoxic chemotherapy: analysis from a multicenter, double-blind, placebo-controlled, randomized, phase Ⅲ clinical trial[J]. J Oral Pathol Med, 2012, 41(3): 229-234.
[23]
Kollef M, Pittet D, Sánchez García M, et al. A randomized double-blind trial of iseganan in prevention of ventilator-associated pneumonia[J]. Am J Respir Crit Care Med, 2006, 173(1): 91-97.
[24]
Gordon YJ, Romanowski EG, McDermott AM. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs[J]. Curr Eye Res, 2005,30(7):505-515.
[25]
de Sá PB, Havens WM, Ghabrial SA. Characterization of a novel broad-spectrum antifungal protein from virus-infected Helminthosporium (Cochliobolus) victoriae[J]. Phytopathology, 2010, 100(9): 880-889.
[26]
Zheng R, Yao B, Yu H, et al. Novel family of antimicrobial peptides from the skin of Rana shuchinae[J]. Peptides, 2010, 31(9): 1674-1677.
[27]
Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies[J]. Nat Biotechnol, 2006, 24(12): 1551-1557.
[28]
Mygind PH, Fischer RL, Schnorr KM, et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus[J]. Nature, 2005, 437(7061): 975-980.
[29]
Brandelli A. Nanostructures as promising tools for delivery of antimicrobial peptides[J]. Mini Rev Med Chem, 2012, 12(8): 731-741.
[30]
Yount NY, Yeaman MR. Emerging themes and therapeutic prospects for anti-infective peptides[J]. Annu Rev Pharmacol Toxicol, 2012, 52: 337-360.
[31]
Niu Y, Wang RE, Wu H, et al. Recent development of small antimicrobial peptidomimetics[J]. Future Med Chem, 2012, 4(14): 1853-1862.
[32]
Olsen CA. Peptoid-Peptide hybrid backbone architectures[J]. Chembiochem, 2010, 11(2): 152-160.
[33]
Méndez-Samperio P. Peptidomimetics as a new generation of antimicrobial agents: current progress[J]. Infect Drug Resist, 2014, 7: 229-237.
[34]
Werneburg M, Zerbe K, Juhas M, et al. Inhibition of lipopolysaccharide transport to the outer membrane in Pseudomonas aeruginosa by peptidomimetic antibiotics[J]. Chembiochem, 2012, 13(12): 1767-1775.
[35]
Srinivas N, Jetter P, Ueberbacher BJ, et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa[J]. Science, 2010, 327(5968): 1010-1013.
[36]
Tillotson GS, Theriault N. New and alternative approaches to tackling antibiotic resistance[J]. F1000Prime Rep, 2013, 5: 51.
[1] 农云洁, 黄小桂, 黄裕兰, 农恒荣. 超声在多重肺部感染诊断中的临床应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 872-876.
[2] 姜珊, 李湘燕, 田硕涵, 温冰, 何睿, 齐心. 采用优化抗感染治疗模式改善糖尿病足感染预后的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 398-403.
[3] 梁孟杰, 朱欢欢, 王行舟, 江航, 艾世超, 孙锋, 宋鹏, 王萌, 刘颂, 夏雪峰, 杜峻峰, 傅双, 陆晓峰, 沈晓菲, 管文贤. 联合免疫治疗的胃癌转化治疗患者预后及术后并发症分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 619-623.
[4] 许月芳, 刘旺, 曾妙甜, 郭宇姝. 多粘菌素B和多粘菌素E治疗外科多重耐药菌感染临床疗效及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 700-703.
[5] 皮尔地瓦斯·麦麦提玉素甫, 李慧灵, 艾克拜尔·艾力, 李赞林, 王志, 克力木·阿不都热依木. 生物补片修补巨大复发性腹壁切口疝临床疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 624-628.
[6] 顾熙, 徐子宇, 周澍, 张吴楼, 张业鹏, 林昊, 刘宗航, 嵇振岭, 郑立锋. 腹股沟疝腹膜前间隙无张力修补术后补片感染10 例报道[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 665-669.
[7] 臧宇, 姚胜, 朱新勇, 戎世捧, 田智超. 低温等离子射频消融治疗腹壁疝术后补片感染的临床效果[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 687-692.
[8] 杨闯, 马雪. 腹壁疝术后感染的危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 693-696.
[9] 邢嘉翌, 龚佳晟, 祝佳佳, 陆群. 肺癌化疗患者继发肺部感染的病原菌耐药性及炎症因子变化分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 714-718.
[10] 王石林, 叶继章, 丘向艳, 陈桂青, 邹晓敏. 慢性阻塞性肺疾病真菌感染风险早期预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 773-776.
[11] 董大红, 周明虎, 李芝朋, 许正峰. 碳青霉烯类抗生素联合呼吸机治疗肺部感染的临床疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 793-796.
[12] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[13] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[14] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[15] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
阅读次数
全文


摘要