切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2015, Vol. 10 ›› Issue (05) : 434 -438. doi: 10.3877/cma.j.issn.1673-9450.2015.05.015

所属专题: 文献

综述

NLRP3炎症复合体与糖尿病慢性难愈性创面关系的研究进展
郜敏1, 刘琰1, 章雄1,()   
  1. 1. 200025 上海交通大学医学院附属瑞金医院灼伤整形外科
  • 收稿日期:2015-07-05 出版日期:2015-10-01
  • 通信作者: 章雄
  • 基金资助:
    国家自然科学基金面上项目(81270909、81170761)

Progress in the research of the relationship between NLRP3 inflammasome and intractable diabetic wound

Min Gao1, Yan Liu1, Xiong Zhang1,()   

  1. 1. Department of Burn and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Received:2015-07-05 Published:2015-10-01
  • Corresponding author: Xiong Zhang
  • About author:
    Corresponding author: Zhang xiong, Email:
引用本文:

郜敏, 刘琰, 章雄. NLRP3炎症复合体与糖尿病慢性难愈性创面关系的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2015, 10(05): 434-438.

Min Gao, Yan Liu, Xiong Zhang. Progress in the research of the relationship between NLRP3 inflammasome and intractable diabetic wound[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2015, 10(05): 434-438.

炎症复合体是近年来发现的一种胞内多蛋白复合体,由NOD样受体(NLR)家族成员或黑素瘤缺乏因子2(AIM2)与凋亡相关斑点样蛋白(ASC)、caspase-1组成。NLRP3炎症复合体作为固有免疫系统的重要组分,在多种炎症性疾病的发生发展过程中起重要作用。糖尿病慢性创面的持续感染和高促炎状态可活化创面巨噬细胞的NLRP3炎症复合体,激活胱天蛋白酶caspase-1,促进白细胞介素1β、白细胞介素-18、白细胞介素-33等促炎因子的成熟和释放,形成持续扩大的炎症反应,是导致糖尿病创面愈合延迟甚至不愈的主要原因之一。

The inflammasomes are a kind of intracellular multiprotein complexes found in recent years, which consist of the family of NOD-like receptor or absent n melanoma 2, apoptosis-associated speck-like protein and caspase-1. As an important composition of natural immune system, NLRP3 inflammasome plays a critical role in the development of varieties of inflammatory disease. Persistent infection and high proinflammatory state of the diabetes chronic wound activate NLRP3 inflammasome of wound macrophages, promote the mature and secretion of proinflammatory factor interleukin-1 beta, interleukin-18, interleukin-33 by activating caspase-1 and form a sustained amplified inflammatory response, which is the main reason of impaired diabetic wound healing.

1
Mirza R, Koh TJ. Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice[J]. Cytokine, 2011, 56(2): 256-264.
2
Bitto A, Altavilla D, Pizzino G, et al. Inhibition of inflammasome activation improves the impaired pattern of healing in genetically diabetic mice[J]. Br J Pharmacol, 2014, 171(9): 2300-2307.
3
Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J]. Mol Cell, 2002, 10(2): 417-426.
4
Tschopp J, Martinon F, Burns K. NALPs: a novel protein family involved in inflammation[J]. Nat Rev Mol Cell Biol, 2003, 4(2): 95-104.
5
Artlett CM. The Role of the NLRP3 Inflammasome in Fibrosis[J]. Open Rheumatol J, 2012, 6: 80-86.
6
Mcneela EA, Burke A, Neill D R, et al. Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4[J]. PLoS Pathog, 2010, 6(11): e1001191.
7
Mori MA, Bezy O, Kahn CR. Metabolic syndrome: is Nlrp3 inflammasome a trigger or a target of insulin resistance[J]. Circ Res, 2011, 108(10): 1160-1162.
8
Franchi L, Mcdonald C, Kanneganti TD, et al. Nucleotide-binding oligomerization domain-like receptors: intracellular pattern recognition molecules for pathogen detection and host defense[J]. J Immunol, 2006, 177(6): 3507-3513.
9
Franchi L, Eigenbrod T, Muñoz-Planillo R, et al. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis[J]. Nat Immunol, 2009, 10(3): 241-247.
10
Kanneganti TD. Central roles of NLRs and inflammasomes in viral infection[J]. Nat Rev Immunol, 2010, 10(10): 688-698.
11
Lamkanfi M, Dixit VM. Inflammasomes: guardians of cytosolic sanctity[J]. Immunol Rev, 2009, 227(1): 95-105.
12
Schroder K, Tschopp J. The inflammasomes[J]. Cell, 2010, 140(6): 821-832.
13
Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes[J]. Cell, 2014, 157(5): 1013-1022.
14
Lu A, Magupalli VG, Ruan J, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes[J]. Cell, 2014, 156(6): 1193-1206.
15
Cai X, Chen J, Xu H, et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation[J]. Cell, 2014, 156(6): 1207-1222.
16
Taniguchi S, Sagara J. Regulatory molecules involved in inflammasome formation with special reference to a key mediator protein, ASC[J]. Semin Immunopathol, 2007, 29(3): 231-238.
17
Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance[J]. Nat Med, 2011, 17(2): 179-188.
18
Vanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights[J]. Trends Cell Biol, 2015, 25(5): 308-315.
19
Jin C, Flavell RA. Molecular mechanism of NLRP3 inflammasome activation[J]. J Clin Immunol, 2010, 30(5): 628-631.
20
Lamkanfi M, Mueller JL, Vitari AC, et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome[J]. J Cell Biol, 2009, 187(1): 61-70.
21
Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization[J]. Nat Immunol, 2008, 9(8): 847-856.
22
Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger[J]. Science, 2010, 327(5963): 296-300.
23
Lee MS. Role of innate immunity in diabetes and metabolism: recent progress in the study of inflammasomes[J]. Immune Netw, 2011, 11(2): 95-99.
24
Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production[J]. Nat Rev Immunol, 2010, 10(3): 210-215.
25
Rathinam VA, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling[J]. Nat Immunol, 2012, 13(4): 333-342.
26
Wen H, Miao EA, Ting JP. Mechanisms of NOD-like receptor-associated inflammasome activation[J]. Immunity, 2013, 39(3): 432-441.
27
Menu P, Mayor A, Zhou R, et al. ER stress activates the NLRP3 inflammasome via an UPR-independent pathway[J]. Cell Death Dis, 2012, 3: e261.
28
Diao L, Marshall AH, Dai X, et al. Burn plus lipopolysaccharide augments endoplasmic reticulum stress and NLRP3 inflammasome activation and reduces PGC-1alpha in liver[J]. Shock, 2014, 41(2): 138-144.
29
Lerner AG, Upton JP, Praveen PV, et al. IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress[J]. Cell Metab, 2012, 16(2): 250-264.
30
Bauernfeind F, Bartok E, Rieger A, et al. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome[J]. J Immunol, 2011, 187(2): 613-617.
31
Fernandes-Alnemri T, Kang S, Anderson C, et al. Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome[J]. J Immunol, 2013, 191(8): 3995-3999.
32
Juliana C, Fernandes-Alnemri T, Kang S, et al. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation[J]. J Biol Chem, 2012, 287(43): 36617-36622.
33
Schroder K, Sagulenko V, Zamoshnikova A, et al. Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction[J]. Immunobiology, 2012, 217(12): 1325-1329.
34
Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease[J]. Annu Rev Cell Dev Biol, 2012, 28: 137-161.
35
Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives[J]. J Inflamm Res, 2015, 8: 15-27.
36
Simard JC, Cesaro A, Chapeton-Montes J, et al. S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-kappaB(1.)[J]. PLoS One, 2013, 8(8): e72138.
37
Luo B, Li B, Wang W, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model[J]. PLoS One, 2014, 9(8): e104771.
38
Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation[J]. Nat Immunol, 2010, 11(2): 136-140.
39
Collier JJ, Burke SJ, Eisenhauer ME, et al. Pancreatic beta-cell death in response to pro-inflammatory cytokines is distinct from genuine apoptosis[J]. PLoS One, 2011, 6(7): e22485.
40
Osborn O, Brownell SE, Sanchez-Alavez M, et al. Treatment with an Interleukin 1 beta antibody improves glycemic control in diet-induced obesity[J]. Cytokine, 2008, 44(1): 141-148.
41
Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling[J]. Nat Immunol, 2011, 12(5): 408-415.
42
Singer AJ, Clark RA. Cutaneous wound healing[J]. N Engl J Med, 1999, 341(10): 738-746.
43
Nishigaki A. [Experimental studies of skin wound healing process by first intention in streptozotocin-induced diabetes mellitus rats][J]. Shikwa Gakuho, 1989, 89(4): 793-822.
44
Blakytny R, Jude E. The molecular biology of chronic wounds and delayed healing in diabetes[J]. Diabet Med, 2006, 23(6): 594-608.
45
Mirza R, Dipietro LA, Koh TJ. Selective and specific macrophage ablation is detrimental to wound healing in mice[J]. Am J Pathol, 2009, 175(6): 2454-2462.
46
崔胜勇,刘琰,章雄. 巨噬细胞功能障碍与糖尿病慢性难愈创面的关系[J]. 中华烧伤杂志,2014, 30(3): 264-269.
47
Lucas T, Waisman A, Ranjan R, et al. Differential roles of macrophages in diverse phases of skin repair[J]. J Immunol, 2010, 184(7): 3964-3977.
48
Daley JM, Brancato SK, Thomay AA, et al. The phenotype of murine wound macrophages[J]. J Leukoc Biol, 2010, 87(1): 59-67.
49
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12): 958-969.
50
Okizaki S, Ito Y, Hosono K, et al. Suppressed recruitment of alternatively activated macrophages reduces TGF-beta1 and impairs wound healing in streptozotocin-induced diabetic mice[J]. Biomed Pharmacother, 2015, 70: 317-325.
51
Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases[J]. Blood, 2011, 117(14): 3720-3732.
52
Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family[J]. Annu Rev Immunol, 2009, 27: 519-550.
53
Mirza RE, Fang MM, Ennis WJ, et al. Blocking interleukin-1beta induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes[J]. Diabetes, 2013, 62(7): 2579-2587.
54
Mirza RE, Fang MM, Weinheimer-Haus EM, et al. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice[J]. Diabetes, 2014, 63(3): 1103-1114.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 王杰, 袁泉, 王玥琦, 乔佳君, 谭春丽, 夏仲元, 刘守尧. 溃疡油在糖尿病足溃疡治疗中的应用效果及安全性观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 480-484.
[3] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[4] 姜珊, 李湘燕, 田硕涵, 温冰, 何睿, 齐心. 采用优化抗感染治疗模式改善糖尿病足感染预后的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 398-403.
[5] 别瑶, 曹志斌, 辛静, 王健楠, 惠宗光. 应用基质血管成分细胞治疗糖尿病足溃疡的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 453-456.
[6] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[7] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[8] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[9] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[10] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[11] 涂晓文. 糖尿病肾脏病的靶点药物研发进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 240-240.
[12] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[13] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[14] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
[15] 李玺, 蔡芸莹, 张永红, 苏恒. 假性软骨发育不全合并1型糖尿病一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 518-520.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?