切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2015, Vol. 10 ›› Issue (05) : 434 -438. doi: 10.3877/cma.j.issn.1673-9450.2015.05.015

所属专题: 文献

综述

NLRP3炎症复合体与糖尿病慢性难愈性创面关系的研究进展
郜敏1, 刘琰1, 章雄1,()   
  1. 1. 200025 上海交通大学医学院附属瑞金医院灼伤整形外科
  • 收稿日期:2015-07-05 出版日期:2015-10-01
  • 通信作者: 章雄
  • 基金资助:
    国家自然科学基金面上项目(81270909、81170761)

Progress in the research of the relationship between NLRP3 inflammasome and intractable diabetic wound

Min Gao1, Yan Liu1, Xiong Zhang1,()   

  1. 1. Department of Burn and Plastic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Received:2015-07-05 Published:2015-10-01
  • Corresponding author: Xiong Zhang
  • About author:
    Corresponding author: Zhang xiong, Email:
引用本文:

郜敏, 刘琰, 章雄. NLRP3炎症复合体与糖尿病慢性难愈性创面关系的研究进展[J]. 中华损伤与修复杂志(电子版), 2015, 10(05): 434-438.

Min Gao, Yan Liu, Xiong Zhang. Progress in the research of the relationship between NLRP3 inflammasome and intractable diabetic wound[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2015, 10(05): 434-438.

炎症复合体是近年来发现的一种胞内多蛋白复合体,由NOD样受体(NLR)家族成员或黑素瘤缺乏因子2(AIM2)与凋亡相关斑点样蛋白(ASC)、caspase-1组成。NLRP3炎症复合体作为固有免疫系统的重要组分,在多种炎症性疾病的发生发展过程中起重要作用。糖尿病慢性创面的持续感染和高促炎状态可活化创面巨噬细胞的NLRP3炎症复合体,激活胱天蛋白酶caspase-1,促进白细胞介素1β、白细胞介素-18、白细胞介素-33等促炎因子的成熟和释放,形成持续扩大的炎症反应,是导致糖尿病创面愈合延迟甚至不愈的主要原因之一。

The inflammasomes are a kind of intracellular multiprotein complexes found in recent years, which consist of the family of NOD-like receptor or absent n melanoma 2, apoptosis-associated speck-like protein and caspase-1. As an important composition of natural immune system, NLRP3 inflammasome plays a critical role in the development of varieties of inflammatory disease. Persistent infection and high proinflammatory state of the diabetes chronic wound activate NLRP3 inflammasome of wound macrophages, promote the mature and secretion of proinflammatory factor interleukin-1 beta, interleukin-18, interleukin-33 by activating caspase-1 and form a sustained amplified inflammatory response, which is the main reason of impaired diabetic wound healing.

1
Mirza R, Koh TJ. Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice[J]. Cytokine, 2011, 56(2): 256-264.
2
Bitto A, Altavilla D, Pizzino G, et al. Inhibition of inflammasome activation improves the impaired pattern of healing in genetically diabetic mice[J]. Br J Pharmacol, 2014, 171(9): 2300-2307.
3
Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J]. Mol Cell, 2002, 10(2): 417-426.
4
Tschopp J, Martinon F, Burns K. NALPs: a novel protein family involved in inflammation[J]. Nat Rev Mol Cell Biol, 2003, 4(2): 95-104.
5
Artlett CM. The Role of the NLRP3 Inflammasome in Fibrosis[J]. Open Rheumatol J, 2012, 6: 80-86.
6
Mcneela EA, Burke A, Neill D R, et al. Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4[J]. PLoS Pathog, 2010, 6(11): e1001191.
7
Mori MA, Bezy O, Kahn CR. Metabolic syndrome: is Nlrp3 inflammasome a trigger or a target of insulin resistance[J]. Circ Res, 2011, 108(10): 1160-1162.
8
Franchi L, Mcdonald C, Kanneganti TD, et al. Nucleotide-binding oligomerization domain-like receptors: intracellular pattern recognition molecules for pathogen detection and host defense[J]. J Immunol, 2006, 177(6): 3507-3513.
9
Franchi L, Eigenbrod T, Muñoz-Planillo R, et al. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis[J]. Nat Immunol, 2009, 10(3): 241-247.
10
Kanneganti TD. Central roles of NLRs and inflammasomes in viral infection[J]. Nat Rev Immunol, 2010, 10(10): 688-698.
11
Lamkanfi M, Dixit VM. Inflammasomes: guardians of cytosolic sanctity[J]. Immunol Rev, 2009, 227(1): 95-105.
12
Schroder K, Tschopp J. The inflammasomes[J]. Cell, 2010, 140(6): 821-832.
13
Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes[J]. Cell, 2014, 157(5): 1013-1022.
14
Lu A, Magupalli VG, Ruan J, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes[J]. Cell, 2014, 156(6): 1193-1206.
15
Cai X, Chen J, Xu H, et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation[J]. Cell, 2014, 156(6): 1207-1222.
16
Taniguchi S, Sagara J. Regulatory molecules involved in inflammasome formation with special reference to a key mediator protein, ASC[J]. Semin Immunopathol, 2007, 29(3): 231-238.
17
Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance[J]. Nat Med, 2011, 17(2): 179-188.
18
Vanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights[J]. Trends Cell Biol, 2015, 25(5): 308-315.
19
Jin C, Flavell RA. Molecular mechanism of NLRP3 inflammasome activation[J]. J Clin Immunol, 2010, 30(5): 628-631.
20
Lamkanfi M, Mueller JL, Vitari AC, et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome[J]. J Cell Biol, 2009, 187(1): 61-70.
21
Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization[J]. Nat Immunol, 2008, 9(8): 847-856.
22
Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger[J]. Science, 2010, 327(5963): 296-300.
23
Lee MS. Role of innate immunity in diabetes and metabolism: recent progress in the study of inflammasomes[J]. Immune Netw, 2011, 11(2): 95-99.
24
Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production[J]. Nat Rev Immunol, 2010, 10(3): 210-215.
25
Rathinam VA, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling[J]. Nat Immunol, 2012, 13(4): 333-342.
26
Wen H, Miao EA, Ting JP. Mechanisms of NOD-like receptor-associated inflammasome activation[J]. Immunity, 2013, 39(3): 432-441.
27
Menu P, Mayor A, Zhou R, et al. ER stress activates the NLRP3 inflammasome via an UPR-independent pathway[J]. Cell Death Dis, 2012, 3: e261.
28
Diao L, Marshall AH, Dai X, et al. Burn plus lipopolysaccharide augments endoplasmic reticulum stress and NLRP3 inflammasome activation and reduces PGC-1alpha in liver[J]. Shock, 2014, 41(2): 138-144.
29
Lerner AG, Upton JP, Praveen PV, et al. IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress[J]. Cell Metab, 2012, 16(2): 250-264.
30
Bauernfeind F, Bartok E, Rieger A, et al. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome[J]. J Immunol, 2011, 187(2): 613-617.
31
Fernandes-Alnemri T, Kang S, Anderson C, et al. Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome[J]. J Immunol, 2013, 191(8): 3995-3999.
32
Juliana C, Fernandes-Alnemri T, Kang S, et al. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation[J]. J Biol Chem, 2012, 287(43): 36617-36622.
33
Schroder K, Sagulenko V, Zamoshnikova A, et al. Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction[J]. Immunobiology, 2012, 217(12): 1325-1329.
34
Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease[J]. Annu Rev Cell Dev Biol, 2012, 28: 137-161.
35
Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives[J]. J Inflamm Res, 2015, 8: 15-27.
36
Simard JC, Cesaro A, Chapeton-Montes J, et al. S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-kappaB(1.)[J]. PLoS One, 2013, 8(8): e72138.
37
Luo B, Li B, Wang W, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model[J]. PLoS One, 2014, 9(8): e104771.
38
Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation[J]. Nat Immunol, 2010, 11(2): 136-140.
39
Collier JJ, Burke SJ, Eisenhauer ME, et al. Pancreatic beta-cell death in response to pro-inflammatory cytokines is distinct from genuine apoptosis[J]. PLoS One, 2011, 6(7): e22485.
40
Osborn O, Brownell SE, Sanchez-Alavez M, et al. Treatment with an Interleukin 1 beta antibody improves glycemic control in diet-induced obesity[J]. Cytokine, 2008, 44(1): 141-148.
41
Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling[J]. Nat Immunol, 2011, 12(5): 408-415.
42
Singer AJ, Clark RA. Cutaneous wound healing[J]. N Engl J Med, 1999, 341(10): 738-746.
43
Nishigaki A. [Experimental studies of skin wound healing process by first intention in streptozotocin-induced diabetes mellitus rats][J]. Shikwa Gakuho, 1989, 89(4): 793-822.
44
Blakytny R, Jude E. The molecular biology of chronic wounds and delayed healing in diabetes[J]. Diabet Med, 2006, 23(6): 594-608.
45
Mirza R, Dipietro LA, Koh TJ. Selective and specific macrophage ablation is detrimental to wound healing in mice[J]. Am J Pathol, 2009, 175(6): 2454-2462.
46
崔胜勇,刘琰,章雄. 巨噬细胞功能障碍与糖尿病慢性难愈创面的关系[J]. 中华烧伤杂志,2014, 30(3): 264-269.
47
Lucas T, Waisman A, Ranjan R, et al. Differential roles of macrophages in diverse phases of skin repair[J]. J Immunol, 2010, 184(7): 3964-3977.
48
Daley JM, Brancato SK, Thomay AA, et al. The phenotype of murine wound macrophages[J]. J Leukoc Biol, 2010, 87(1): 59-67.
49
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12): 958-969.
50
Okizaki S, Ito Y, Hosono K, et al. Suppressed recruitment of alternatively activated macrophages reduces TGF-beta1 and impairs wound healing in streptozotocin-induced diabetic mice[J]. Biomed Pharmacother, 2015, 70: 317-325.
51
Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases[J]. Blood, 2011, 117(14): 3720-3732.
52
Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family[J]. Annu Rev Immunol, 2009, 27: 519-550.
53
Mirza RE, Fang MM, Ennis WJ, et al. Blocking interleukin-1beta induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes[J]. Diabetes, 2013, 62(7): 2579-2587.
54
Mirza RE, Fang MM, Weinheimer-Haus EM, et al. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice[J]. Diabetes, 2014, 63(3): 1103-1114.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[3] 王洁, 丁泊文, 尹健. 糖尿病性乳腺病52例临床分析[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 285-289.
[4] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[5] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[6] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[7] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[8] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[9] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[10] 李琛, 张惟佳, 潘亚萍. 牙周炎与系统性疾病之间关系的应用思考:2022年EFP和WONCA欧洲分部联合研讨会共识报告的解读及启示[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 322-327.
[11] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[12] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[13] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[14] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[15] 谢国晓, 赵凌霞, 薛雪花. 慢性病管理模式在糖尿病社区管理中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 587-590.
阅读次数
全文


摘要