切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2023, Vol. 18 ›› Issue (06) : 542 -546. doi: 10.3877/cma.j.issn.1673-9450.2023.06.017

综述

细胞自噬在创面愈合中作用的研究进展
周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军()   
  1. 430077 武汉,华中科技大学同济医学院附属梨园医院创面修复科
    430022 武汉,华中科技大学同济医学院附属协和医院手外科
  • 收稿日期:2023-03-31 出版日期:2023-12-01
  • 通信作者: 邹利军
  • 基金资助:
    湖北省重点研发计划项目(2020BCB029); 湖北省自然科学基金项目(2020CFB696); 湖北省慢性创面及糖尿病医学临床研究中心资助项目(2018BCC340)

Advances of autophagy in wound healing

Zihui Zhou, Gongchi Li, Binghui Li, Zhi Wang, Huizhen Liu, Hui Wang, Lijun Zou()   

  1. Department of Wound Repair, Liyuan Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430077, China
    Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
  • Received:2023-03-31 Published:2023-12-01
  • Corresponding author: Lijun Zou
引用本文:

周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.

Zihui Zhou, Gongchi Li, Binghui Li, Zhi Wang, Huizhen Liu, Hui Wang, Lijun Zou. Advances of autophagy in wound healing[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(06): 542-546.

自噬是一种复杂且严格调控的途径,被认为是细胞程序性死亡的第二种类型,能消除受损或有害的细胞内成分来维持营养和能量稳态,这对机体而言是一种保护机制。对哺乳动物来说自噬的主要任务归结于防御、代谢和质量控制。近年来,创面愈合缺陷和慢性创面的出现已成为当今社会日益严重的问题,这可能与老龄化、糖尿病等因素有关。难愈合创面的高发病率严重降低受影响个体的生活质量,并给医疗保健系统带来巨大成本压力,临床多采取对症处理,但治疗结果通常不理想,主要原因是对创面修复的细胞分子机制仍没有充分的了解。目前越来越多的研究表明自噬几乎参与创面修复的各个阶段,其具体机制尚在逐步研究中,本文将综述自噬的相关过程及调节,以及在创面愈合研究中的进展与突破。

Autophagy, a complex and tightly regulated process, is considered the second type of programmed cell death. It eliminates damaged or harmful intracellular components to maintain nutrient and energy homeostasis and functions as a protective mechanism against organisms. Autophagy mainly contributes to defense, metabolism, and quality control in mammals. In recent years, the prevalence of wound-healing defects and chronic wounds has considerably increased, which may be attributed to factors such as aging and diabetes. Moreover, the increased incidence of nonhealing wounds significantly reduces the quality of life of patients and imposes a massive financial burden on the healthcare system. Despite being widely adopted in clinical practice, symptomatic treatment generally results in unsatisfactory outcomes, mainly due to the lack of comprehensive understanding of the cellular and molecular mechanisms underlying wound healing. Although several studies have demonstrated the involvement of autophagy in almost all stages of wound healing, specific mechanisms for the same are under investigation. This study reviewed the relevant processes and regulation of autophagy along with the progress and breakthroughs made in the research on wound healing.

[1]
Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes[J]. Open Biol, 2020, 10(9): 200223.
[2]
Oh SJ, Lee MS. Role of autophagy in the pathogenesis of diabetes and therapeutic potential of autophagy modulators in the treatment of diabetes and metabolic syndrome[J]. J Korean Med Sci, 2022, 37(37): e276.
[3]
Gao Y, Luo C, Rui T, et al. Autophagy inhibition facilitates wound closure partially dependent on the YAP/IL-33 signaling in a mouse model of skin wound healing[J]. FASEB J, 2021, 35(10): e21920.
[4]
Galluzzi L, Green DR. Autophagy-independent functions of the autophagy machinery[J]. Cell, 2019, 177(7): 1682-1699.
[5]
Sylakowski K, Wells A. ECM-regulation of autophagy: the yin and the yang of autophagy during wound healing[J]. Matrix Biol, 2021, 100-101: 197-206.
[6]
刘汝兰,毛汉潇,何渊民,等. ROS调控细胞自噬在UVA致人皮肤成纤维细胞凋亡中的作用[J]. 中国皮肤性病学杂志2023, 37(1): 10-16.
[7]
Jeong D, Qomaladewi NP, Lee J, et al. The role of autophagy in skin fibroblasts, keratinocytes, melanocytes, and epidermal stem cells[J]. J Invest Dermatol, 2020, 140(9): 1691-1697.
[8]
Xu Y, Wan W. Acetylation in the regulation of autophagy[J]. Autophagy, 2023, 19(2): 379-387.
[9]
Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective[J]. Cell, 2019, 176(1-2): 11-42.
[10]
Li W, He P, uang Y, et al. Selective autophagy of intracellular organelles: recent research advances[J]. Theranostics, 2021, 11(1): 222-256.
[11]
Akkoc Y, Gozuacik D. MicroRNAs as major regulators of the autophagy pathway[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(5): 118662.
[12]
Zheng A, Ma H, Liu X, et al. Effects of moist exposed burn therapy and ointment (MEBT/MEBO) on the autophagy mTOR signalling pathway in diabetic ulcer wounds[J]. Pharm Biol, 2020, 58(1): 124-130.
[13]
Kim JY, Mondaca-Ruff D, Singh S, et al. SIRT1 and autophagy: implications in endocrine disorders[J]. Front Endocrinol (Lausanne), 2022, 13: 930919.
[14]
Condello M, Pellegrini E, Caraglia M, et al. Targeting autophagy to overcome human diseases[J]. Int J Mol Sci, 2019, 20(3): 725.
[15]
Wu MY, Lu JH. Autophagy and macrophage functions: inflammatory response and phagocytosis[J]. Cells, 2019, 9(1): 70.
[16]
Song J, Hu L, Liu B, et al. The emerging role of immune cells and targeted therapeutic strategies in diabetic wounds healing[J]. J Inflamm Res, 2022, 15: 4119-4138.
[17]
Ma Y, Li S, Ye S, et al. Effect of propiconazole on neutrophil extracellular traps formation: assessing the role of autophagy[J]. Food Chem Toxicol, 2022, 168: 113354.
[18]
Shrestha S, Lee JM, Hong CW. Autophagy in neutrophils[J]. Korean J Physiol Pharmacol, 2020, 24(1): 1-10.
[19]
Doronzo G, Astanina E, Cora D, et al. TFEB controls vascular development by regulating the proliferation of endothelial cells[J]. EMBO J, 2019, 38(3): e98250.
[20]
Shi D, Ding J, Xie S, et al. Myocardin/microRNA-30a/Beclin1 signaling controls the phenotypic modulation of vascular smooth muscle cells by regulating autophagy[J]. Cell Death Dis, 2022, 13(2): 121.
[21]
Laughlin T, Tan Y, Jarrold B, et al. Autophagy activators stimulate the removal of advanced glycation end products in human keratinocytes[J]. J Eur Acad Dermatol Venereol, 2020, 34 Suppl 3: 12-18.
[22]
邓海波,李恭驰,陈冉,等. 高糖环境基质细胞衍生因子-1对巨噬细胞基质金属蛋白酶-9及血管内皮生长因子表达的影响[J]. 中华实验外科杂志. 2021, 38(9): 1696-1699.
[23]
Deretic V. Autophagy in inflammation, infection, and immunometabolism[J]. Immunity, 2021, 54(3): 437-453.
[24]
Wen JH, Li DY, Liang S, et al. Macrophage autophagy in macrophage polarization, chronic inflammation and organ fibrosis[J]. Front Immunol, 2022, 13: 946832.
[25]
Kawano A, Ariyoshi W, Yoshioka Y, et al. Docosahexaenoic acid enhances M2 macrophage polarization via the p38 signaling pathway and autophagy[J]. J Cell Biochem, 2019, 120(8): 12604-12617.
[26]
Lagos J, Sagadiev S, Diaz J, et al. Autophagy induced by Toll-like receptor ligands regulates antigen extraction and presentation by B cells[J]. Cells, 2022, 11(23): 3883.
[27]
Han NR, Moon PD, Nam SY, et al. TSLP up-regulates inflammatory responses through induction of autophagy in T cells[J]. FASEB J, 2022, 36(2): e22148.
[28]
Li A, Gao M, Liu B, et al. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease[J]. Cell Death Dis, 2022, 13(5): 444.
[29]
杜灿灿,刘丽姗,李文静,等. 自噬调控细胞代谢平衡的研究进展[J]. 中国细胞生物学学报2020, 42(11): 2003-2013.
[30]
Xie Y, Yu L, Cheng Z, et al. SHED-derived exosomes promote LPS-induced wound healing with less itching by stimulating macrophage autophagy[J]. J Nanobiotechnology, 2022, 20(1): 239.
[31]
Choi MS, Chae YJ, Choi JW, et al. Potential therapeutic approaches through modulating the autophagy process for skin barrier dysfunction[J]. Int J Mol Sci, 2021, 22(15): 7869.
[32]
Song J, Liu A, Liu B, et al. Natural biologics accelerate healing of diabetic foot ulcers by regulating oxidative stress[J]. Front Biosci (Landmark Ed), 2022, 27(10): 285.
[33]
Yamauchi S, Mano S, Oikawa K, et al. Autophagy controls reactive oxygen species homeostasis in guard cells that is essential for stomatal opening[J]. Proc Natl Acad Sci U S A, 2019, 116(38): 19187-19192.
[34]
Editorial Office. Erratum to enhanced autophagy promotes the clearance of pseudomonas aeruginosa in diabetic rats with wounds[J]. Ann Transl Med, 2022, 10(13): 756.
[35]
Song FC, Yuan JQ, Zhu MD, et al. High glucose represses the proliferation of tendon fibroblasts by inhibiting autophagy activation in tendon injury[J]. Bioscience Reports, 2022, 42(3): BSR20210640.
[36]
Li L, Zhang J, Zhang Q, et al. High glucose suppresses keratinocyte migration through the inhibition of p38 MAPK/autophagy pathway[J]. Front Physiol, 2019, 10: 24.
[37]
Aragonès G, Dasuri K, Olukorede O, et al. Autophagic receptor p62 protects against glycation-derived toxicity and enhances viability[J]. Aging Cell, 2020, 19(11): e13257.
[38]
李曼,朱威,张海萍. 不同来源间充质干细胞外泌体在皮肤损伤修复中的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(6): 515-519.
[39]
Deng J, Zhong L, Zhou Z, et al. Autophagy: a promising therapeutic target for improving mesenchymal stem cell biological functions[J]. Mol Cell Biochem, 2021, 476(2): 1135-1149.
[40]
Shi Y, Wang S, Zhang W, et al. Bone marrow mesenchymal stem cells facilitate diabetic wound healing through the restoration of epidermal cell autophagy via the HIF-1alpha/TGF-beta1/SMAD pathway[J]. Stem Cell Res Ther, 2022, 13(1): 314.
[41]
Yin Y, Chen F, Li J, et al. AURKA enhances autophagy of adipose derived stem cells to promote diabetic wound repair via targeting FOXO3a[J]. J Invest Dermatol, 2020, 140(8): 1639-1649 e4.
[42]
Guo S, Fang Q, Chen L, et al. Locally activated mitophagy contributes to a " built-in" protection against early burn-wound progression in rats[J]. Life Sci, 2021, 276: 119095.
[43]
Tang SC, Ko JL, Lu CT, et al. Chloroquine alleviates the heat-induced to injure via autophagy and apoptosis mechanisms in skin cell and mouse models[J]. PLoS One, 2022, 17(8): e0272797.
[44]
Zhao W, Han J, Hu X, et al. PINK1/PRKN-dependent mitophagy in the burn injury model[J]. Burns, 2021, 47(3): 628-633.
[45]
Han F, Li Z, Han S, et al. SIRT1 suppresses burn injury-induced inflammatory response through activating autophagy in RAW264. 7 macrophages[J]. J Investig Med, 2021, 69(3): 761-767.
[46]
Deng X, Zhao F, Zhao D, et al. Oxymatrine promotes hypertrophic scar repair through reduced human scar fibroblast viability, collagen and induced apoptosis via autophagy inhibition[J]. Int Wound J, 2022, 19(5): 1221-1231.
[47]
Ripszky Totan A, Greabu M, Stanescu-Spinu II, et al. The Yin and Yang dualistic features of autophagy in thermal burn wound healing[J]. Int J Immunopathol Pharmacol, 2022, 36: 3946320221125090.
[48]
张剑,宋菲,王西樵. 成纤维细胞的自噬性溶解死亡在增生性瘢痕消退过程中的作用[J]. 上海交通大学学报(医学版), 2022, 42(1): 44-50.
[49]
Chen H, Xu K, Sun C, et al. Inhibition of ANGPT2 activates autophagy during hypertrophic scar formation via PI3K/AKT/mTOR pathway[J]. An Bras Dermatol, 2023, 98(1): 26-35.
[50]
Ceccariglia S, Cargnoni A, Silini AR, et al. Autophagy: a potential key contributor to the therapeutic action of mesenchymal stem cells[J]. Autophagy, 2020, 16(1): 28-37.
[51]
Wang F, Zhang C, Dai L, et al. Bafilomycin A1 accelerates chronic refractory wound healing in db/db mice[J]. Biomed Res Int, 2020, 2020: 6265701.
[52]
Zeng T, Wang X, Wang W, et al. Endothelial cell-derived small extracellular vesicles suppress cutaneous wound healing through regulating fibroblasts autophagy[J]. Clin Sci (Lond), 2019, 133(9): CS20190008.
[1] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[2] 李亚龙, 王星童, 申传安. 异体富血小板血浆在创面修复中的临床应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 541-545.
[3] 李煜, 王鹏, 陆翮, 冯蓉琴, 韩军涛. 采用低频脉冲电刺激治疗深Ⅱ度烧伤创面的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 474-478.
[4] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[5] 周涵, 武胡雯, 张培深, 邓晗彬, 范闻轩, 李嘉诚, 程少文. 蛋白质组学在慢性难愈合创面研究中的应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 536-540.
[6] 王宏宇, 巴特, 黄瑞娟, 陈强, 闫增强. 亲属头皮加自体头皮混合移植接力在大面积深度烧伤创面修复中的应用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 554-554.
[7] 王强, 金光哲, 巨积辉, 王凯, 唐晓强, 吕文涛, 程贺云, 杨林, 王海龙. 超声辅助定位下游离臂内侧皮瓣在修复手指创面中的临床应用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 393-397.
[8] 仲卫冬, 胡根, 邵国益. 腹腔开放合并肠空气瘘的管理[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 462-462.
[9] 李争光, 宰爽嘉, 吴火峰, 孙华, 张永博, 陈浏阳, 戴睿, 张亮. 昼夜节律相关因子在椎间盘退行性变发病机制中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 457-461.
[10] 孙勇, 彭曦. 重视烧伤创面愈合中的葡萄糖代谢以优化营养治疗策略[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 277-281.
[11] 狄海萍, 郑军杰, 刘磊, 郭海娜, 邢培朋, 曹大勇, 马超, 黄万新, 张博, 夏成德, 周超. 人工真皮联合富血小板纤维蛋白修复小面积深度创面的临床疗效[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 288-293.
[12] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[13] 胡安丽, 黄建, 王建平, 王晓培, 陈宏亮, 陈虹羽. 分期施方熏洗对肛瘘术后患者创面肉芽组织生成的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 402-410.
[14] 史清泉, 苗彬, 王烁, 陶琳, 沈晨. miR-181a-5p 靶向ATG5 抑制雨蛙素诱导的大鼠胰腺腺泡细胞AR42J自噬的机制研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 524-530.
[15] 刘霖, 张文欢, 宋雅茹, 姜云璐. Apelin-13 在阿尔茨海默病中的神经保护作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 276-280.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?