切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2023, Vol. 18 ›› Issue (06) : 542 -546. doi: 10.3877/cma.j.issn.1673-9450.2023.06.017

综述

细胞自噬在创面愈合中作用的研究进展
周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军()   
  1. 430077 武汉,华中科技大学同济医学院附属梨园医院创面修复科
    430022 武汉,华中科技大学同济医学院附属协和医院手外科
  • 收稿日期:2023-03-31 出版日期:2023-12-01
  • 通信作者: 邹利军
  • 基金资助:
    湖北省重点研发计划项目(2020BCB029); 湖北省自然科学基金项目(2020CFB696); 湖北省慢性创面及糖尿病医学临床研究中心资助项目(2018BCC340)

Advances of autophagy in wound healing

Zihui Zhou, Gongchi Li, Binghui Li, Zhi Wang, Huizhen Liu, Hui Wang, Lijun Zou()   

  1. Department of Wound Repair, Liyuan Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430077, China
    Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
  • Received:2023-03-31 Published:2023-12-01
  • Corresponding author: Lijun Zou
引用本文:

周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.

Zihui Zhou, Gongchi Li, Binghui Li, Zhi Wang, Huizhen Liu, Hui Wang, Lijun Zou. Advances of autophagy in wound healing[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2023, 18(06): 542-546.

自噬是一种复杂且严格调控的途径,被认为是细胞程序性死亡的第二种类型,能消除受损或有害的细胞内成分来维持营养和能量稳态,这对机体而言是一种保护机制。对哺乳动物来说自噬的主要任务归结于防御、代谢和质量控制。近年来,创面愈合缺陷和慢性创面的出现已成为当今社会日益严重的问题,这可能与老龄化、糖尿病等因素有关。难愈合创面的高发病率严重降低受影响个体的生活质量,并给医疗保健系统带来巨大成本压力,临床多采取对症处理,但治疗结果通常不理想,主要原因是对创面修复的细胞分子机制仍没有充分的了解。目前越来越多的研究表明自噬几乎参与创面修复的各个阶段,其具体机制尚在逐步研究中,本文将综述自噬的相关过程及调节,以及在创面愈合研究中的进展与突破。

Autophagy, a complex and tightly regulated process, is considered the second type of programmed cell death. It eliminates damaged or harmful intracellular components to maintain nutrient and energy homeostasis and functions as a protective mechanism against organisms. Autophagy mainly contributes to defense, metabolism, and quality control in mammals. In recent years, the prevalence of wound-healing defects and chronic wounds has considerably increased, which may be attributed to factors such as aging and diabetes. Moreover, the increased incidence of nonhealing wounds significantly reduces the quality of life of patients and imposes a massive financial burden on the healthcare system. Despite being widely adopted in clinical practice, symptomatic treatment generally results in unsatisfactory outcomes, mainly due to the lack of comprehensive understanding of the cellular and molecular mechanisms underlying wound healing. Although several studies have demonstrated the involvement of autophagy in almost all stages of wound healing, specific mechanisms for the same are under investigation. This study reviewed the relevant processes and regulation of autophagy along with the progress and breakthroughs made in the research on wound healing.

[1]
Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes[J]. Open Biol, 2020, 10(9): 200223.
[2]
Oh SJ, Lee MS. Role of autophagy in the pathogenesis of diabetes and therapeutic potential of autophagy modulators in the treatment of diabetes and metabolic syndrome[J]. J Korean Med Sci, 2022, 37(37): e276.
[3]
Gao Y, Luo C, Rui T, et al. Autophagy inhibition facilitates wound closure partially dependent on the YAP/IL-33 signaling in a mouse model of skin wound healing[J]. FASEB J, 2021, 35(10): e21920.
[4]
Galluzzi L, Green DR. Autophagy-independent functions of the autophagy machinery[J]. Cell, 2019, 177(7): 1682-1699.
[5]
Sylakowski K, Wells A. ECM-regulation of autophagy: the yin and the yang of autophagy during wound healing[J]. Matrix Biol, 2021, 100-101: 197-206.
[6]
刘汝兰,毛汉潇,何渊民,等. ROS调控细胞自噬在UVA致人皮肤成纤维细胞凋亡中的作用[J]. 中国皮肤性病学杂志2023, 37(1): 10-16.
[7]
Jeong D, Qomaladewi NP, Lee J, et al. The role of autophagy in skin fibroblasts, keratinocytes, melanocytes, and epidermal stem cells[J]. J Invest Dermatol, 2020, 140(9): 1691-1697.
[8]
Xu Y, Wan W. Acetylation in the regulation of autophagy[J]. Autophagy, 2023, 19(2): 379-387.
[9]
Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective[J]. Cell, 2019, 176(1-2): 11-42.
[10]
Li W, He P, uang Y, et al. Selective autophagy of intracellular organelles: recent research advances[J]. Theranostics, 2021, 11(1): 222-256.
[11]
Akkoc Y, Gozuacik D. MicroRNAs as major regulators of the autophagy pathway[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(5): 118662.
[12]
Zheng A, Ma H, Liu X, et al. Effects of moist exposed burn therapy and ointment (MEBT/MEBO) on the autophagy mTOR signalling pathway in diabetic ulcer wounds[J]. Pharm Biol, 2020, 58(1): 124-130.
[13]
Kim JY, Mondaca-Ruff D, Singh S, et al. SIRT1 and autophagy: implications in endocrine disorders[J]. Front Endocrinol (Lausanne), 2022, 13: 930919.
[14]
Condello M, Pellegrini E, Caraglia M, et al. Targeting autophagy to overcome human diseases[J]. Int J Mol Sci, 2019, 20(3): 725.
[15]
Wu MY, Lu JH. Autophagy and macrophage functions: inflammatory response and phagocytosis[J]. Cells, 2019, 9(1): 70.
[16]
Song J, Hu L, Liu B, et al. The emerging role of immune cells and targeted therapeutic strategies in diabetic wounds healing[J]. J Inflamm Res, 2022, 15: 4119-4138.
[17]
Ma Y, Li S, Ye S, et al. Effect of propiconazole on neutrophil extracellular traps formation: assessing the role of autophagy[J]. Food Chem Toxicol, 2022, 168: 113354.
[18]
Shrestha S, Lee JM, Hong CW. Autophagy in neutrophils[J]. Korean J Physiol Pharmacol, 2020, 24(1): 1-10.
[19]
Doronzo G, Astanina E, Cora D, et al. TFEB controls vascular development by regulating the proliferation of endothelial cells[J]. EMBO J, 2019, 38(3): e98250.
[20]
Shi D, Ding J, Xie S, et al. Myocardin/microRNA-30a/Beclin1 signaling controls the phenotypic modulation of vascular smooth muscle cells by regulating autophagy[J]. Cell Death Dis, 2022, 13(2): 121.
[21]
Laughlin T, Tan Y, Jarrold B, et al. Autophagy activators stimulate the removal of advanced glycation end products in human keratinocytes[J]. J Eur Acad Dermatol Venereol, 2020, 34 Suppl 3: 12-18.
[22]
邓海波,李恭驰,陈冉,等. 高糖环境基质细胞衍生因子-1对巨噬细胞基质金属蛋白酶-9及血管内皮生长因子表达的影响[J]. 中华实验外科杂志. 2021, 38(9): 1696-1699.
[23]
Deretic V. Autophagy in inflammation, infection, and immunometabolism[J]. Immunity, 2021, 54(3): 437-453.
[24]
Wen JH, Li DY, Liang S, et al. Macrophage autophagy in macrophage polarization, chronic inflammation and organ fibrosis[J]. Front Immunol, 2022, 13: 946832.
[25]
Kawano A, Ariyoshi W, Yoshioka Y, et al. Docosahexaenoic acid enhances M2 macrophage polarization via the p38 signaling pathway and autophagy[J]. J Cell Biochem, 2019, 120(8): 12604-12617.
[26]
Lagos J, Sagadiev S, Diaz J, et al. Autophagy induced by Toll-like receptor ligands regulates antigen extraction and presentation by B cells[J]. Cells, 2022, 11(23): 3883.
[27]
Han NR, Moon PD, Nam SY, et al. TSLP up-regulates inflammatory responses through induction of autophagy in T cells[J]. FASEB J, 2022, 36(2): e22148.
[28]
Li A, Gao M, Liu B, et al. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease[J]. Cell Death Dis, 2022, 13(5): 444.
[29]
杜灿灿,刘丽姗,李文静,等. 自噬调控细胞代谢平衡的研究进展[J]. 中国细胞生物学学报2020, 42(11): 2003-2013.
[30]
Xie Y, Yu L, Cheng Z, et al. SHED-derived exosomes promote LPS-induced wound healing with less itching by stimulating macrophage autophagy[J]. J Nanobiotechnology, 2022, 20(1): 239.
[31]
Choi MS, Chae YJ, Choi JW, et al. Potential therapeutic approaches through modulating the autophagy process for skin barrier dysfunction[J]. Int J Mol Sci, 2021, 22(15): 7869.
[32]
Song J, Liu A, Liu B, et al. Natural biologics accelerate healing of diabetic foot ulcers by regulating oxidative stress[J]. Front Biosci (Landmark Ed), 2022, 27(10): 285.
[33]
Yamauchi S, Mano S, Oikawa K, et al. Autophagy controls reactive oxygen species homeostasis in guard cells that is essential for stomatal opening[J]. Proc Natl Acad Sci U S A, 2019, 116(38): 19187-19192.
[34]
Editorial Office. Erratum to enhanced autophagy promotes the clearance of pseudomonas aeruginosa in diabetic rats with wounds[J]. Ann Transl Med, 2022, 10(13): 756.
[35]
Song FC, Yuan JQ, Zhu MD, et al. High glucose represses the proliferation of tendon fibroblasts by inhibiting autophagy activation in tendon injury[J]. Bioscience Reports, 2022, 42(3): BSR20210640.
[36]
Li L, Zhang J, Zhang Q, et al. High glucose suppresses keratinocyte migration through the inhibition of p38 MAPK/autophagy pathway[J]. Front Physiol, 2019, 10: 24.
[37]
Aragonès G, Dasuri K, Olukorede O, et al. Autophagic receptor p62 protects against glycation-derived toxicity and enhances viability[J]. Aging Cell, 2020, 19(11): e13257.
[38]
李曼,朱威,张海萍. 不同来源间充质干细胞外泌体在皮肤损伤修复中的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(6): 515-519.
[39]
Deng J, Zhong L, Zhou Z, et al. Autophagy: a promising therapeutic target for improving mesenchymal stem cell biological functions[J]. Mol Cell Biochem, 2021, 476(2): 1135-1149.
[40]
Shi Y, Wang S, Zhang W, et al. Bone marrow mesenchymal stem cells facilitate diabetic wound healing through the restoration of epidermal cell autophagy via the HIF-1alpha/TGF-beta1/SMAD pathway[J]. Stem Cell Res Ther, 2022, 13(1): 314.
[41]
Yin Y, Chen F, Li J, et al. AURKA enhances autophagy of adipose derived stem cells to promote diabetic wound repair via targeting FOXO3a[J]. J Invest Dermatol, 2020, 140(8): 1639-1649 e4.
[42]
Guo S, Fang Q, Chen L, et al. Locally activated mitophagy contributes to a " built-in" protection against early burn-wound progression in rats[J]. Life Sci, 2021, 276: 119095.
[43]
Tang SC, Ko JL, Lu CT, et al. Chloroquine alleviates the heat-induced to injure via autophagy and apoptosis mechanisms in skin cell and mouse models[J]. PLoS One, 2022, 17(8): e0272797.
[44]
Zhao W, Han J, Hu X, et al. PINK1/PRKN-dependent mitophagy in the burn injury model[J]. Burns, 2021, 47(3): 628-633.
[45]
Han F, Li Z, Han S, et al. SIRT1 suppresses burn injury-induced inflammatory response through activating autophagy in RAW264. 7 macrophages[J]. J Investig Med, 2021, 69(3): 761-767.
[46]
Deng X, Zhao F, Zhao D, et al. Oxymatrine promotes hypertrophic scar repair through reduced human scar fibroblast viability, collagen and induced apoptosis via autophagy inhibition[J]. Int Wound J, 2022, 19(5): 1221-1231.
[47]
Ripszky Totan A, Greabu M, Stanescu-Spinu II, et al. The Yin and Yang dualistic features of autophagy in thermal burn wound healing[J]. Int J Immunopathol Pharmacol, 2022, 36: 3946320221125090.
[48]
张剑,宋菲,王西樵. 成纤维细胞的自噬性溶解死亡在增生性瘢痕消退过程中的作用[J]. 上海交通大学学报(医学版), 2022, 42(1): 44-50.
[49]
Chen H, Xu K, Sun C, et al. Inhibition of ANGPT2 activates autophagy during hypertrophic scar formation via PI3K/AKT/mTOR pathway[J]. An Bras Dermatol, 2023, 98(1): 26-35.
[50]
Ceccariglia S, Cargnoni A, Silini AR, et al. Autophagy: a potential key contributor to the therapeutic action of mesenchymal stem cells[J]. Autophagy, 2020, 16(1): 28-37.
[51]
Wang F, Zhang C, Dai L, et al. Bafilomycin A1 accelerates chronic refractory wound healing in db/db mice[J]. Biomed Res Int, 2020, 2020: 6265701.
[52]
Zeng T, Wang X, Wang W, et al. Endothelial cell-derived small extracellular vesicles suppress cutaneous wound healing through regulating fibroblasts autophagy[J]. Clin Sci (Lond), 2019, 133(9): CS20190008.
[1] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[2] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[3] 蔡柔妹, 曾洁梅, 黄伟丽, 谢文敏, 刘燕丹, 吴漫君, 蔡楚燕. 利用QC小组干预降低经烧伤创面股静脉置管导管相关性感染发生率的临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 399-404.
[4] 何雪锋, 赵世新, 李珮珊, 刘恒登, 谢举临. 卡奴卡叶提取物通过增强真皮成纤维细胞功能促进大鼠创面修复的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 405-412.
[5] 朱凯思, 金剑, 杨玉坤. pH依赖的成膜性液体敷料对大鼠创面愈合的影响[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 413-418.
[6] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[7] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[8] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[9] 韩春茂. 解决慢性创面患者医疗服务最后一公里[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 460-460.
[10] 谢挺. 疑难创面疾病的诊疗思路[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 368-368.
[11] 冉新泽, 王军平, 王涛, 王锋超, 程天民. 我国放射复合伤创面处理与创伤促愈的研究历程[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 280-284.
[12] 陈旭渊, 罗仕云, 李文忠, 李毅. 腺源性肛瘘经手术治疗后创面愈合困难的危险因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 82-85.
[13] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[14] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要