切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2016, Vol. 11 ›› Issue (03) : 186 -190. doi: 10.3877/cma.j.issn.1673-9450.2016.03.007

所属专题: 文献

专家述评

表皮细胞迁移与创面愈合
郭小伟1, 张家平2, 黄跃生2,()   
  1. 1. 121001 锦州,解放军第二〇五医院烧伤整形科
    2. 400038 重庆,第三军医大学西南医院烧伤研究所,创伤、烧伤与复合伤国家重点实验室
  • 收稿日期:2016-01-25 出版日期:2016-06-01
  • 通信作者: 黄跃生
  • 基金资助:
    国家重点基础研究发展计划(2012CB518101)

Epidermal cells migration and wound healing

Xiaowei Guo1, Jiaping Zhang2, Yuesheng Huang2,()   

  1. 1. Department of Burns and Plastic Surgery, the 205th Hospital of People′s Liberation Army, Jinzhou 121001, China
    2. State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
  • Received:2016-01-25 Published:2016-06-01
  • Corresponding author: Yuesheng Huang
  • About author:
    Corresponding author: Huang Yuesheng, Email:
引用本文:

郭小伟, 张家平, 黄跃生. 表皮细胞迁移与创面愈合[J]. 中华损伤与修复杂志(电子版), 2016, 11(03): 186-190.

Xiaowei Guo, Jiaping Zhang, Yuesheng Huang. Epidermal cells migration and wound healing[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2016, 11(03): 186-190.

创面愈合是动态的、严格有序的生物学过程,再上皮化在其中起着非常重要的作用。皮肤创面的再上皮化主要依赖于表皮细胞从创缘向创面中心的迁移。创面形成后由于局部血液循环障碍和创周细胞氧耗的增加,导致创面形成低氧的微环境,低氧已经被证明能够促进表皮细胞迁移和创面愈合。创面形成后由于跨上皮电势差的消失产生内源性的直流电场,此电场是创面愈合过程中指导表皮细胞向创面中心迁移的最重要的方向信号。此外,创面形成后产生的炎症因子一氧化氮被证实也能够促进表皮细胞迁移和创面愈合。综上所述,低氧、电场和一氧化氮可通过促进表皮细胞向创面中心迁移进而加快创面愈合过程。

Wound healing is a dynamic and well-ordered biological process, in which re-epithelialization plays an important role. Re-epithelialization of skin wounds depends upon epidermal cells migration from the wound edge. Hypoxia is a microenvironmental stress that occurs immediately after injury, likely due to the vascular disruption and increased oxygen consumption by cells surrounding the wound edge, which has been shown to promote epidermal cells migration and wound healing. Endogenous electric field (EF) is generated instantaneously after injury due to the collapse of the trans-epithelial potentials, which plays an overriding guidance role in directing epidermal cells migration towards the wound center in wound healing. In addition, nitric monoxide (NO) as an inflammatory factor produced after wounds occur has been found to promote epidermal cells migration and wound healing. In conclusion, hypoxia, EF and NO accelerate the healing process though promoting epidermal cells migration towards the wound center.

1
Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314-321.
2
Fuhr MJ, Meyer M, Fehr E, et al. A modeling approach to study the effect of cell polarization on keratinocyte migration[J]. PLoS One, 2015, 10(2): e0117676.
3
Usui ML, Mansbridge JN, Carter WG, et al. Keratinocyte migration, proliferation, and differentiation in chronic ulcers from patients with diabetes and normal wounds[J]. J Histochem Cytochem, 2008, 56(7): 687-696.
4
Ridley AJ, Schwartz MA, Burridge K, et al. Cell migration: integrating signals from front to back[J]. Science, 2003, 302(5651): 1704-1709.
5
Ridgway PF, Ziprin P, Peck DH, et al. Hypoxia increases reepithelialization via an alphavbeta6-dependent pathway[J]. Wound Repair Regen, 2005, 13(2): 158-164.
6
Rodriguez PG, Felix FN, Woodley DT, et al. The role of oxygen in wound healing: a review of the literature[J]. Dermatol Surg, 2008, 34(9): 1159-1169.
7
Li W, Li Y, Guan S, et al. Extracellular heat shock protein-90alpha: linking hypoxia to skin cell motility and wound healing[J]. EMBO J, 2007, 26(5): 1221-1233.
8
Woodley DT, Fan J, Cheng CF, et al. Participation of the lipoprotein receptor LRP1 in hypoxia-HSP90alpha autocrine signaling to promote keratinocyte migration[J]. J Cell Sci, 2009, 122(Pt 10): 1495-1498.
9
Patel V, Chivukula IV, Roy S, et al. Oxygen: from the benefits of inducing VEGF expression to managing the risk of hyperbaric stress[J]. Antioxid Redox Signal, 2005, 7(9/10): 1377-1387.
10
Lokmic Z, Darby IA, Thompson EW, et al. Time course analysis of hypoxia, granulation tissue and blood vessel growth, and remodeling in healing rat cutaneous incisional primary intention wounds[J]. Wound Repair Regen, 2006, 14(3): 277-288.
11
Humar R, Kiefer FN, Berns H, et al. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling[J]. FASEB J, 2002, 16(8): 771-780.
12
Daniel RJ, Groves RW. Increased migration of murine keratinocytes under hypoxia is mediated by induction of urokinase plasminogen activator[J]. J Invest Dermatol, 2002, 119(6): 1304-1309.
13
O′Toole EA, Marinkovich MP, Peavey CL, et al. Hypoxia increases human keratinocyte motility on connective tissue[J]. J Clin Invest, 1997, 100(11): 2881-2891.
14
Jiang X, Guo X, Xu X, et al. Hypoxia regulates CD9-mediated keratinocyte migration via the P38/MAPK pathway[J]. Sci Rep, 2014, 4: 6304.
15
闫甜甜,张东霞,江旭品,等.不同时间低氧处理对人表皮细胞株HaCaT运动和增殖的影响[J].中华烧伤杂志,2014,30(3):231-236.
16
Zhao M, Song B, Pu J, et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN[J]. Nature, 2006, 442(7101): 457-460.
17
Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration[J]. Semin Cell Dev Biol, 2009, 20(6): 674-682.
18
Guo X, Jiang X, Ren X, et al. The Galvanotactic Migration of Keratinocytes is Enhanced by Hypoxic Preconditioning[J]. Sci Rep, 2015, 5: 10289.
19
Spitler R, Schwappacher R, Wu T, et al. Nitrosyl-cobinamide (NO-Cbi), a new nitric oxide donor, improves wound healing through cGMP/cGMP-dependent protein kinase[J]. Cell Signal, 2013, 25(12): 2374-2382.
20
Bernatchez SF, Menon V, Stoffel J, et al. Nitric oxide levels in wound fluid may reflect the healing trajectory[J]. Wound Repair Regen, 2013, 21(3): 410-417.
21
Zhan R, Yang S, He W, et al. Nitric Oxide Enhances Keratinocyte Cell Migration by Regulating Rho GTPase via cGMP-PKG Signalling[J]. PLoS One, 2015, 10(3): e0121551.
22
Zhang J, Dong J, Gu H, et al. CD9 is critical for cutaneous wound healing through JNK signaling[J]. J Invest Dermatol, 2012, 132(1): 226-236.
23
Xia YP, Zhao Y, Tyrone JW, et al. Differential activation of migration by hypoxia in keratinocytes isolated from donors of increasing age: implication for chronic wounds in the elderly[J]. J Invest Dermatol, 2001, 116(1): 50-56.
24
Rausch S, Das T, Soine JR, et al. Polarizing cytoskeletal tension to induce leader cell formation during collective cell migration[J]. Biointerphases, 2013, 8(1): 32.
25
杨沛瑯,常清璇,章雄,等.局部应用胰岛素对糖尿病大鼠烫伤创面愈合的影响[J/CD].中华损伤与修复杂志:电子版,2014,9(4):360-366.
[1] 李康, 耿喜林, 汪玉良, 刘京升. 踝关节Logsplitter损伤诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 566-570.
[2] 赵宇, 赵松, 赵金忠. 前交叉韧带损伤及重建后继发性膝骨关节炎的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 415-423.
[3] 许振琦, 易伟, 范闻轩, 王金锋. 经鼻高流量氧疗与无创机械通气在严重创伤术后轻中度低氧血症患者中的临床应用[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 306-309.
[4] 陈腊青, 林佳佳, 毛洪刚, 童冠海, 汪梦娜, 夏红波, 刘卓, 徐海霞, 赵玉华, 张传领. 血清细胞因子及呼出气一氧化氮在哮喘-慢性阻塞性肺疾病重叠综合征中的临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 316-320.
[5] 米洁, 陈晨, 李佳玲, 裴海娜, 张恒博, 李飞, 李东杰. 儿童头面部外伤特点分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 511-515.
[6] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[7] 陈继秋, 朱世辉. 皮肤牵张装置的临床应用现状[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 451-453.
[8] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[9] 李勇, 全勇, 傅仕艳, 冉新泽, 唐红, 柳随义, 李杰, 舒畅, 陈用来, 张静, 杨冰冰, 郝玉徽. 低氧环境对小鼠急性放射损伤的影响[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 299-305.
[10] 潘玮瑄, 郝少龙, 韩威. 低氧微环境与实体恶性肿瘤m6A修饰的研究进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 461-464.
[11] 汪俊谷, 潘华琴, 杨雨田. HFNC治疗急性低氧性呼吸衰竭插管预后及影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 523-525.
[12] 陈趟, 王艺萱, 吴刚. 单肺通气术中低氧血症与术后肺部并发症的关系及其预测意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 355-357.
[13] 刘卓, 段虎斌. 生物电相关疗法在神经损伤修复中的应用进展[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 257-260.
[14] 蒋子涵, 于丰源, 张宏达, 丁蕾, 米利杰, 唐闽. 2023年美国心律学年会心律失常领域最新临床研究进展[J]. 中华心脏与心律电子杂志, 2023, 11(02): 125-128.
[15] 汪颖, 李沛霖, 李泉, 狄红梅, 高昶. 呼出气一氧化氮监测诊断幽门螺杆菌感染的有效性研究[J]. 中华胃肠内镜电子杂志, 2023, 10(01): 37-40.
阅读次数
全文


摘要