切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2017, Vol. 12 ›› Issue (02) : 143 -145. doi: 10.3877/cma.j.issn.1673-9450.2017.02.015

所属专题: 文献

综述

真皮内脂肪组织的研究进展
余小平1, 左衍海2, 陆树良2,()   
  1. 1. 730000 兰州,甘肃省人民医院烧伤科
    2. 200025 上海交通大学医学院附属瑞金医院上海市烧伤研究所,上海市创面修复研究中心
  • 收稿日期:2017-01-04 出版日期:2017-04-01
  • 通信作者: 陆树良
  • 基金资助:
    国家重点基础研究发展规划项目(973项目)(2012CB518105)

Research progress on intradermal adipose tissue

Xiaoping Yu1, Yanhai Zuo2, Shuliang Lu2,()   

  1. 1. Department of Burns, Gansu Provincial Hospital, Lanzhou 730000, China
    2. Shanghai Institute of Burns, Shanghai Research Center of Wound Repair, Rui Jin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Received:2017-01-04 Published:2017-04-01
  • Corresponding author: Shuliang Lu
  • About author:
    Corresponding author: Lu Shuliang, Email:
引用本文:

余小平, 左衍海, 陆树良. 真皮内脂肪组织的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2017, 12(02): 143-145.

Xiaoping Yu, Yanhai Zuo, Shuliang Lu. Research progress on intradermal adipose tissue[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2017, 12(02): 143-145.

真皮内脂肪组织是毛囊相关研究不断深入的结果,二者在结构上密不可分,在功能上相互影响。真皮内脂肪对人类脂肪相关的疾病如创面愈合、肥胖、脂肪代谢障碍、脱发、硬皮病等的深入研究具有借鉴意义。本文就真皮内脂肪的研究进展以及生物特性作一综述。

Intradermal adipose tissue is the hair follicles research deepening, of the two inseparable in structure, influence each other in function. In human of adipose tissue related diseases such as obesity, alopecia, wound healing, adipose tissue metabolism disorders, and significance of reference to in-depth study of scleroderma. This paper reviews the research on intradermal adipose tissue progress and biological characteristics

图1 小鼠及人真皮内脂肪组织模式对比图
8
Klyde BJ, Hirsch J. Increased cellular proliferation in adipose-tissue of adult-rats fed a high-fat diet[J]. J Lipid Res, 1979, 20(6):705-715.
9
Biernaskie J, Paris M, Morozova O, et al. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells[J]. Cell Stem Cell, 2009, 5(6):610-623.
10
Joe AW, Yi L, Natarajan A, et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis[J]. Nat Cell Biol, 2010, 12(2):153-163.
11
Uezumi A, Fukada S, Yamamoto N, et al. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle[J]. Nat Cell Biol, 2010, 12(2):143-152.
12
Uezumi A, Ito T, Morikawa D, et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle[J]. J Cell Sci, 2011, 124(Pt 21):3654-3664.
13
Plikus MV, Mayer JA, de la Cruz D, et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration[J]. Nature, 2008, 451(7176):340-344.
14
Festa E, Fretz J, Berry R, et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling[J]. Cell, 2011, 146(5):761-771.
15
Driskell RR, Jahoda CA, Chuong CM, et al. Defining dermal adipose tissue[J]. Exp Dermatol, 2014, 23(9):629-631.
16
Church C, Horowitz M, Rodeheffer M. WAT is a functional adipocyte[J]. Adipocyte, 2012, 1(1):38-45.
17
Goldstein J, Horsley V. Home sweet home: skin stem cell niches[J]. Cell Mol Life Sci, 2012, 69(15):2573-2582.
18
Schmidt B, Horsley V. Unravelling hair follicle-adipocyte communication[J]. Exp Dermatol, 2012, 21(11):827-830.
19
Schmidt BA, Horsley V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing[J]. Development, 2013, 140(7):1517-1527.
20
Rivera-Gonzalez G, Shook B, Horsley V. Adipocytes in skin health and disease[J]. Cold Spring Harb Perspect Med, 2014, 4(3):1-19.
21
Wojciechowicz K, Gledhill K, Ambler CA, et al. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4[J]. PLoS One, 2013, 8(3):e59811.
22
Schmidt B, Horsley V. Unraveling hair follicle-adipocyte communication[J]. Exp Dermatol, 2012, 21(11):827-830.
23
Moffat GH. The growth of hair follicles and its relation to the adjacent dermal structures[J]. J Anat, 1968, 102(Pt 3):527-540.
24
Driskell RR, Lichtenberger BM, Hoste E, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair[J]. Nature, 2013, 504(7479):277-281.
25
Ohgo S, Hasegawa S, Hasebe Y, et al. Bleomycin inhibits adipogenesis and accelerates fibrosis in the subcutaneous adipose layer through TGF-β1[J]. Exp Dermatol, 2013, 22(11):769-771.
26
Kuk JL, Saunders TJ, Davidson LE, et al. Age-related changes in total and regional fat distribution[J]. Ageing Res Rev, 2009, 8(4):339-348.
27
Sun LQ, Lee DW, Zhang Q, et al. Growth retardation and premature aging phenotypes in mice with disruption of the SNF2-like gene, PASG[J]. Genes Dev, 2004, 18(9):1035-1046.
28
Kondratov RV, Kondratova AA, Gorbacheva VY, et al. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock[J]. Genes Dev, 2006, 20(14):1868-1873.
1
Sanchez-Gurmaches J, Guertin DA. Adipocyte lineages: tracing back the origins of fat[J]. Biochim Biophys Acta, 2014, 1842(3):340-351.
2
Kouba M, Sellier P. A review of the factors influencing the development of intermuscular adipose tissue in the growing pig[J]. Meat Sci, 2011, 88(2):213-220.
3
Hauser N, Mourot J, De Clercq L, et al.The cellularity of developing adipose tissues in Pietrain and Meishan pigs[J]. Reprod Nutr Dev, 1997, 37(6):617-625.
4
Kouba M, Bonneau M, Noblet J. Relative development of subcutaneous, intermuscular, and kidney fat in growing pigs with different body compositions[J]. J Anim Sci, 1999, 77(3):622-629.
5
Spalding KL, Arner E, Westermark PO, et al. Dynamics of fat cell turnover in humans[J]. Nature, 2008, 453(7196):783-787.
6
Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation[J]. Physiol Rev, 1998, 78(3):783-809.
7
Hausman GJ, Campion DR, Richardson RL, et al. Adipocyte development in the rat hypodermis[J]. Am J Anat, 1981, 161(1):85-100.
29
Treiber N, Maity P, Singh K, et al. Accelerated aging phenotype in mice with conditional deficiency for mitochondrial superoxide dismutase in the connective tissue[J]. Aging Cell, 2011, 10(2):239-254.
30
Bilkei-Gorzo A, Drews E, Albayram Ö,et al. Early onset of aging-like changes is restricted to cognitive abilities and skin structure in Cnr1-/- mice[J]. Neurobiol Aging, 2012, 33(1):200.e11-22.
[1] 李璐璐, 马利红, 金佳佳, 谷伟. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 97-103.
[2] 狄海萍, 郑军杰, 刘磊, 郭海娜, 邢培朋, 曹大勇, 马超, 黄万新, 张博, 夏成德, 周超. 人工真皮联合富血小板纤维蛋白修复小面积深度创面的临床疗效[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 288-293.
[3] 卢玉祥, 任尊, 蔡伟杰, 卢玉, 吴恒, 徐峥宇, 韩培. 人工真皮结合刃厚皮片一期移植与中厚皮片移植修复皮瓣供区的比较分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(03): 223-230.
[4] 邱加崇, 余继超, 刘冰峰, 范晓鹏, 卫家民, 袁晓燕, 苏丽梅, 刘旭盛. 人工真皮移植结合自体微型皮柱点阵式种植在修复深度创面的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(03): 231-237.
[5] 廖晓霜, 曾李, 杨波. 脱细胞同种异体真皮联合自体皮修复糖尿病足创面的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 46-50.
[6] 胡瑞斌, 周丹亚, 朱亮, 黄天翔, 沈航崇, 王欣. 人工真皮联合自体刃厚皮移植在手部严重烧伤后瘢痕挛缩治疗中的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 8-11.
[7] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[8] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[9] 张礼刚, 邹志辉, 许顺, 蔡可可, 胡永涛, 梁朝朝. 酒精对慢性非细菌性前列腺炎中T淋巴细胞变化的影响研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 74-81.
[10] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[11] 王冰倩, 汪振星, 夏芸. 利用微小毛发模型验证α-倒捻子素在毛囊中的抗氧化特性的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 83-89.
[12] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J/OL]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[13] 蒋心怡, 顾丹丹, 叶艳, 缪佳蓉. RNA测序研究抗菌肽KT2治疗溃疡性结肠炎的作用机制[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(01): 8-15.
[14] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J/OL]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[15] 刘强, 宣婉丽, 康媛, 李佩. 前庭大腺癌应用脱细胞真皮填充保留外阴手术一例并文献复习[J/OL]. 中华临床医师杂志(电子版), 2024, 18(01): 105-108.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?