切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2017, Vol. 12 ›› Issue (02) : 143 -145. doi: 10.3877/cma.j.issn.1673-9450.2017.02.015

所属专题: 文献

综述

真皮内脂肪组织的研究进展
余小平1, 左衍海2, 陆树良2,()   
  1. 1. 730000 兰州,甘肃省人民医院烧伤科
    2. 200025 上海交通大学医学院附属瑞金医院上海市烧伤研究所,上海市创面修复研究中心
  • 收稿日期:2017-01-04 出版日期:2017-04-01
  • 通信作者: 陆树良
  • 基金资助:
    国家重点基础研究发展规划项目(973项目)(2012CB518105)

Research progress on intradermal adipose tissue

Xiaoping Yu1, Yanhai Zuo2, Shuliang Lu2,()   

  1. 1. Department of Burns, Gansu Provincial Hospital, Lanzhou 730000, China
    2. Shanghai Institute of Burns, Shanghai Research Center of Wound Repair, Rui Jin Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Received:2017-01-04 Published:2017-04-01
  • Corresponding author: Shuliang Lu
  • About author:
    Corresponding author: Lu Shuliang, Email:
引用本文:

余小平, 左衍海, 陆树良. 真皮内脂肪组织的研究进展[J]. 中华损伤与修复杂志(电子版), 2017, 12(02): 143-145.

Xiaoping Yu, Yanhai Zuo, Shuliang Lu. Research progress on intradermal adipose tissue[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2017, 12(02): 143-145.

真皮内脂肪组织是毛囊相关研究不断深入的结果,二者在结构上密不可分,在功能上相互影响。真皮内脂肪对人类脂肪相关的疾病如创面愈合、肥胖、脂肪代谢障碍、脱发、硬皮病等的深入研究具有借鉴意义。本文就真皮内脂肪的研究进展以及生物特性作一综述。

Intradermal adipose tissue is the hair follicles research deepening, of the two inseparable in structure, influence each other in function. In human of adipose tissue related diseases such as obesity, alopecia, wound healing, adipose tissue metabolism disorders, and significance of reference to in-depth study of scleroderma. This paper reviews the research on intradermal adipose tissue progress and biological characteristics

图1 小鼠及人真皮内脂肪组织模式对比图
8
Klyde BJ, Hirsch J. Increased cellular proliferation in adipose-tissue of adult-rats fed a high-fat diet[J]. J Lipid Res, 1979, 20(6):705-715.
9
Biernaskie J, Paris M, Morozova O, et al. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells[J]. Cell Stem Cell, 2009, 5(6):610-623.
10
Joe AW, Yi L, Natarajan A, et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis[J]. Nat Cell Biol, 2010, 12(2):153-163.
11
Uezumi A, Fukada S, Yamamoto N, et al. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle[J]. Nat Cell Biol, 2010, 12(2):143-152.
12
Uezumi A, Ito T, Morikawa D, et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle[J]. J Cell Sci, 2011, 124(Pt 21):3654-3664.
13
Plikus MV, Mayer JA, de la Cruz D, et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration[J]. Nature, 2008, 451(7176):340-344.
14
Festa E, Fretz J, Berry R, et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling[J]. Cell, 2011, 146(5):761-771.
15
Driskell RR, Jahoda CA, Chuong CM, et al. Defining dermal adipose tissue[J]. Exp Dermatol, 2014, 23(9):629-631.
16
Church C, Horowitz M, Rodeheffer M. WAT is a functional adipocyte[J]. Adipocyte, 2012, 1(1):38-45.
17
Goldstein J, Horsley V. Home sweet home: skin stem cell niches[J]. Cell Mol Life Sci, 2012, 69(15):2573-2582.
18
Schmidt B, Horsley V. Unravelling hair follicle-adipocyte communication[J]. Exp Dermatol, 2012, 21(11):827-830.
19
Schmidt BA, Horsley V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing[J]. Development, 2013, 140(7):1517-1527.
20
Rivera-Gonzalez G, Shook B, Horsley V. Adipocytes in skin health and disease[J]. Cold Spring Harb Perspect Med, 2014, 4(3):1-19.
21
Wojciechowicz K, Gledhill K, Ambler CA, et al. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4[J]. PLoS One, 2013, 8(3):e59811.
22
Schmidt B, Horsley V. Unraveling hair follicle-adipocyte communication[J]. Exp Dermatol, 2012, 21(11):827-830.
23
Moffat GH. The growth of hair follicles and its relation to the adjacent dermal structures[J]. J Anat, 1968, 102(Pt 3):527-540.
24
Driskell RR, Lichtenberger BM, Hoste E, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair[J]. Nature, 2013, 504(7479):277-281.
25
Ohgo S, Hasegawa S, Hasebe Y, et al. Bleomycin inhibits adipogenesis and accelerates fibrosis in the subcutaneous adipose layer through TGF-β1[J]. Exp Dermatol, 2013, 22(11):769-771.
26
Kuk JL, Saunders TJ, Davidson LE, et al. Age-related changes in total and regional fat distribution[J]. Ageing Res Rev, 2009, 8(4):339-348.
27
Sun LQ, Lee DW, Zhang Q, et al. Growth retardation and premature aging phenotypes in mice with disruption of the SNF2-like gene, PASG[J]. Genes Dev, 2004, 18(9):1035-1046.
28
Kondratov RV, Kondratova AA, Gorbacheva VY, et al. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock[J]. Genes Dev, 2006, 20(14):1868-1873.
1
Sanchez-Gurmaches J, Guertin DA. Adipocyte lineages: tracing back the origins of fat[J]. Biochim Biophys Acta, 2014, 1842(3):340-351.
2
Kouba M, Sellier P. A review of the factors influencing the development of intermuscular adipose tissue in the growing pig[J]. Meat Sci, 2011, 88(2):213-220.
3
Hauser N, Mourot J, De Clercq L, et al.The cellularity of developing adipose tissues in Pietrain and Meishan pigs[J]. Reprod Nutr Dev, 1997, 37(6):617-625.
4
Kouba M, Bonneau M, Noblet J. Relative development of subcutaneous, intermuscular, and kidney fat in growing pigs with different body compositions[J]. J Anim Sci, 1999, 77(3):622-629.
5
Spalding KL, Arner E, Westermark PO, et al. Dynamics of fat cell turnover in humans[J]. Nature, 2008, 453(7196):783-787.
6
Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation[J]. Physiol Rev, 1998, 78(3):783-809.
7
Hausman GJ, Campion DR, Richardson RL, et al. Adipocyte development in the rat hypodermis[J]. Am J Anat, 1981, 161(1):85-100.
29
Treiber N, Maity P, Singh K, et al. Accelerated aging phenotype in mice with conditional deficiency for mitochondrial superoxide dismutase in the connective tissue[J]. Aging Cell, 2011, 10(2):239-254.
30
Bilkei-Gorzo A, Drews E, Albayram Ö,et al. Early onset of aging-like changes is restricted to cognitive abilities and skin structure in Cnr1-/- mice[J]. Neurobiol Aging, 2012, 33(1):200.e11-22.
[1] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[2] 何雪锋, 赵世新, 李珮珊, 刘恒登, 谢举临. 卡奴卡叶提取物通过增强真皮成纤维细胞功能促进大鼠创面修复的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 405-412.
[3] 马军, 周华, 陈浩, 黄毅, 陈如俊, 杨磊, 肖仕初. 比较人工真皮联合自体刃厚皮两步法与一步法移植修复皮肤缺损创面的疗效观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 109-115.
[4] 王宏宇, 周彪, 闫增强, 侯智慧, 德奇, 杨瑞, 王睿甲, 李洋洋, 黄瑞娟, 巴特. 双层人工真皮联合自体刃厚皮移植修复烧创伤后骨/肌腱外露创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 25-31.
[5] 王运帷, 罗亮, 曹鹏, 张清怡, 李少珲, 陈阳, 官浩. 真皮毛乳头细胞分离培养技术的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 520-523.
[6] 刘甜甜, 李明, 朱含汀, 倪涛, 彭银波, 方勇. 创缘铁过载的临床样本验证与铁过载对小鼠创面愈合的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 475-481.
[7] 张星哲, 郑秉暄, 邓格, 豆猛, 石玉婷, 卫田, 郭映聪, 韩锋, 赵艳龙, 丁晨光, 田普训. 髓源性抑制细胞通过抑制炎症反应减轻小鼠肾脏缺血再灌注损伤[J]. 中华移植杂志(电子版), 2023, 17(01): 42-46.
[8] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[9] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[10] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[11] 白静怡, 黄轩, 张益权, 田颖, 陶勇. 小鼠干眼模型构建及其角膜特征检测的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 12-17.
[12] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[13] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[14] 梁伟, 王晓彬, 洪笑阳, 蔡明岳, 梁礼聪, 陈烨, 黄培凯, 刘铭宇, 林立腾, 朱康顺. 原位肝癌小鼠微波消融术后复发模型的构建[J]. 中华介入放射学电子杂志, 2023, 11(02): 133-139.
[15] 买买提·依斯热依力, 王永康, 阿巴伯克力·乌斯曼, 克力木·阿不都热依木. 基于16s rRNA测序分析小鼠高脂饮食诱导肥胖的肠道菌群结构特征[J]. 中华肥胖与代谢病电子杂志, 2023, 09(01): 12-16.
阅读次数
全文


摘要