切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2017, Vol. 12 ›› Issue (02) : 138 -142. doi: 10.3877/cma.j.issn.1673-9450.2017.02.014

所属专题: 文献

综述

干细胞预处理及其保护机制的研究进展
黄宏1, 邱伟1, 陈民佳1, 张娅1, 安天琛1, 朱明1, 朱方强2,()   
  1. 1. 400042 重庆,第三军医大学大坪医院野战外科研究所,创伤、烧伤与复合伤国家重点实验室
    2. 401120 重庆医科大学第三附属医院泌尿外科
  • 收稿日期:2017-02-01 出版日期:2017-04-01
  • 通信作者: 朱方强
  • 基金资助:
    国家自然科学基金基金(81372059,81571912); 国家重点基础研究发展规划项目(2012CB518104,2012GB518105); 重庆高校创新团队建设计划资助项目(CXTDX201601005)

Preconditioning of mesenchymal stromal cells and its protection mechanism

Hong Huang1, Wei Qiu1, Minjia Chen1, Ya Zhang1, Tianchen An1, Ming Zhu1, Fangqiang Zhu2,()   

  1. 1. State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Surgery Research, Daping Hospital, the Third Military Medical University, Chongqing 400042, China
    2. Department of Urinary Surgery, the Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
  • Received:2017-02-01 Published:2017-04-01
  • Corresponding author: Fangqiang Zhu
  • About author:
    Corresponding author: Zhu Fangqiang, Email:
引用本文:

黄宏, 邱伟, 陈民佳, 张娅, 安天琛, 朱明, 朱方强. 干细胞预处理及其保护机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2017, 12(02): 138-142.

Hong Huang, Wei Qiu, Minjia Chen, Ya Zhang, Tianchen An, Ming Zhu, Fangqiang Zhu. Preconditioning of mesenchymal stromal cells and its protection mechanism[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2017, 12(02): 138-142.

干细胞移植治疗为临床疾病治疗开辟了新的天地,极具前景和希望,并取得了不错进展,然而,目前这一技术的应用却面临两大瓶颈问题:移植干细胞靶向性差和到达损伤部位存活率低下,严重阻碍了这一技术在临床广泛应用。而干细胞预处理为解决这两大难题带来了新希望,研究证实通过预处理干细胞可以明显改善其迁移、归巢和存活能力,为此,本文将对其相关研究作一综述。

Stem cell transplantation has opened up new worlds, with great prospects and hopes for clinical disease treatment, and it has made great progress. However, Bone mesenchyme stem cell therapy has been hindered by both key problems, lack of targetting/poor cell engraftment and apoptosis of the implanted cells, resulting in poor therapeutic effects thereby hampering extensive application of this technology in clinical. The stem cell pre-conditioning has brought new hope to solve these two problems. It has been proved that pretreatment of stem cells can improve its migration, homing and survival ability. To this end, the authours will review the related research.

1
Guenou H, Nissan X, Larcher F, et al. Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study[J]. Lancet, 2009, 374(9703):1745-1753.
2
Dabiri G, Heiner D, Falanga V. The emerging use of bone marrow-derived mesenchymal stem cells in the treatment of human chronic wounds[J]. Expert Opin Emerg Drugs, 2013, 18(4):405-419
3
Amiri F, Jahanian-Najafabadi A, Roudkenar MH. In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments[J]. Cell Stress Chaperones, 2015, 20(2):237-251.
4
Yu SP, Wei Z, Wei L. Preconditioning strategy in stem cell transplantation therapy[J]. Transl Stroke Res, 2013, 4(1):76-88.
5
Mastri M, Lin H, Lee T. Enhancing the efficacy of mesenchymal stem cell therapy[J]. World J Stem Cells, 2014, 6(2):82-93.
6
Robey TE, Saiget MK, Reinecke H, et al. Systems approaches to preventing transplanted cell death in cardiac repair[J]. J Mol Cell Cardiol, 2008, 45(4):567-581.
7
Cencioni C, Capogrossi MC, Napolitano M. The SDF-1/CXCR4 axis in stem cell preconditioning[J]. Cardiovasc Res, 2012, 94(3):400-407.
8
Lee S, Choi E, Cha MJ, et al. Cell adhesion and long-Term survival of transplanted mesenchymal stem cells: a prerequisite for cell therapy[J]. Oxid Med Cell Longev, 2015, 2015:632902.
9
Haider HK, Ashraf M. Preconditioning and stem cell survival[J]. J Cardiovasc Transl Res, 2010, 3(2):89-102.
10
Yamaoka M, Yamaguchi S, Suzuki T, et al. Apoptosis in rat cardiac myocytes induced by Fas ligand: priming for Fas-mediated apoptosis with doxorubicin[J]. J Mol Cell Cardiol, 2000, 32(6):881-889.
11
Watanabe S, Arimura Y, Nagaishi K, et al. Conditioned mesenchymal stem cells produce pleiotropic gut trophic factors[J]. J Gastroenterol, 2014, 49(2):270-282.
12
Cai H, Zhang Z, Yang GY. Preconditioned stem cells: a promising strategy for cell-based ischemic stroke therapy[J]. Curr Drug Targets, 2014, 15(8):771-779.
13
Kim SW, Kim HW, Huang W, et al. Cardiac stem cells with electrical stimulation improve ischaemic heart function through regulation of connective tissue growth factor and miR-378[J]. Cardiovascular Res, 2013, 100(Suppl 2):241-251.
14
Yu HM, Zhi JL, Cui Y, et al. Role of the JAK-STAT pathway in protection of hydrogen peroxide preconditioning groat apoptosis induced by oxidative stress in PC12 cells[J]. Apoptosis, 2006, 11(6):931-941.
15
Mirotsou M, Zhang Z, Deb A, et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair[J]. Proc Natl Acad Sci, 2007, 104(5):1643-1648.
16
Wang X, Zhang T, Huang W, et al. Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors[J]. Stem Cells, 2009, 27(12):3021-3031.
17
Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway[J]. Annu Rev Pharmacol Toxicol, 2007, 47:89-116.
18
Mohammadzadeh M, Halabian R, Gharehbaghian A, et al. Nrf-2 overexpression in mesenchymal stem cells reduces oxidative stress-induced apoptosis and cytotoxicity[J]. Cell Stress Chaperones, 2012, 17(5):553-565.
19
Hamedi-Asl P, Halabian R, Bahmani P, et al. Adenovirus-mediated expression of the HO-1 protein within MSCs decreased cytotoxicity and inhibited apoptosis induced by oxidative stresses[J]. Cell Stress Chaperones, 2012, 17(2):181-190.
20
Kiani AA, Abdi J, Halabian R, et al. Over expression of HIF-1α in human mesenchymal stem cells increases their supportive functions for hematopoietic stem cells in an experimental co-culture model[J]. Hematology, 2014, 19(2):85-98.
21
Yu SP, Wei Z, Wei L. Preconditioning strategy in stem cell transplantation therapy[J]. Transl Stroke Res, 2013, 4(1):76-88.
22
Kameritsch P, Pogoda K, Pohl U. Channel-independent influence of connexin 43 on cell migration[J]. Biochim Biophys Acta, 2012, 1818(2):1993-2001.
23
Jaderstad J, Brismar H, Herlenius E. Hypoxia preconditioning increases gap-junctional graft and host communication[J]. Neuroreport, 2010, 21(17):1126-1132.
24
Chen J, Crawford R, Chen C, et al. The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration[J]. Tissue Eng Part B Rev, 2013, 19(6):516-528.
25
Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infracted hearts[J]. Nat Med, 2003, 9(9):1195-1201.
26
Li W, Ma N, Ong LL, et al. Bcl-2 engineered MSCs inhibited apoptosis and improved heart function[J]. Stem Cells, 2007, 25(8):2118-2127.
27
Yin Q, Jin P, Liu X, et al. SDF-1alpha inhibits hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells through PI3K/Akt and ERK1/2 signaling pathways[J]. Mol Biol Rep, 2011, 38(1):9-16.
28
Liu X, Duan B, Cheng Z, et al. SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion[J]. Protein Cell, 2011, 2(10):845-854.
29
Jang MW, Yun SP, Park JH, et al. Cooperation of Epac1/Rap1/Akt and PKA in prostaglandin E(2)-induced proliferation of human umbilical cord blood derived mesenchymal stem cells: involvement of c-Myc and VEGF expression[J]. J Cell Physiol, 2012, 227(12):3756-3767.
30
Bocker W, Docheva D, Prall WC, et al. IKK-2 is required for TNF-alphainduced invasion and proliferation of human mesenchymal stem cells[J]. J Mol Med, 2008, 86(10):1183-1192.
31
Tamama K, Fan VH, Griffith LG, et al. Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells[J]. Stem Cells, 2006, 24(3):686-695.
32
Chavakis E, Koyanagi M, Dimmeler S. Enhancing the outcome of cell therapy for cardiac repair:progress from bench to bedside and back[J]. Circulation, 2010, 121(2):325-335.
33
Ip CK, Cheung AN, Ngan HY, et al. p70 S6 kinase in the control of actin cytoskeleton dynamics and directed migration of ovarian cancer cells[J]. Oncogene, 2011, 30(21):2420-2432.
34
Jiang P, Enomoto A, Jijiwa M, et al. An actin-binding protein Girdin regulates the motility of breast cancer cells[J]. Cancer Res, 2008, 68(5):1310-1318.
35
Liu X, Duan B, Cheng Z, et al. SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion[J]. Protein Cell, 2011, 2(10):845-854.
36
Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement[J]. FASEB J, 2006, 20(6):661-669.
37
Granero-Molto F, Myers TJ, Weis JA, et al. Mesenchymal stem cells expressing insulin-like growth factor-I (MSCIGF) promote fracture healing and restore new bone formation in Irs1 knockout mice: analyses of MSCIGF autocrine and paracrine regenerative effects[J]. Stem Cells, 2011, 29(10):1537-1548.
38
Cai L, Johnstone BH, Cook TG, et al. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization[J]. Stem Cells, 2007, 25(12):3234-3243.
39
Wen Q, Zhou L, Zhou C, et al. Change in hepatocyte growth factor concentration promote mesenchymal stem cell-mediated osteogenic regeneration[J]. J Cell Mol Med, 2011, 16(6):1260-1273.
40
Pasha Z, Wang Y, Sheikh R, et al. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium[J]. Cardiovasc Res, 2008, 77(1):134-142.
41
Saxena A, Fish JE, White MD, et al. Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction[J]. Circulation, 2008, 117(17):2224-2231.
42
Chen J, Crawford R, Chen C, et al. The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration[J]. Tissue Eng Part B Rev, 2013, 19(6):516-528.
43
Wang CY, Mayo MW, Korneluk RG, et al. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation[J]. Science, 1998, 281(5383):1680-1683.
44
Crisostomo PR, Wang Y, Markel TA, et al. Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNKdependent mechanism[J]. Am J Physiol Cell Physiol, 2008, 294(1):675-682.
[1] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
[2] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[3] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[4] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[5] 严华悦, 刘子祥, 周少波. 磷酸烯醇式丙酮酸羧激酶-1在恶性肿瘤中的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(06): 452-456.
[6] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[7] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[8] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[9] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[10] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[11] 傅斌生, 冯啸, 杨卿, 曾凯宁, 姚嘉, 唐晖, 刘剑戎, 魏绪霞, 易慧敏, 易述红, 陈规划, 杨扬. 脂肪变性供肝在成人劈离式肝移植中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 789-794.
[12] 魏志鸿, 刘建勇, 吴小雅, 杨芳, 吕立志, 江艺, 蔡秋程. 肝移植术后急性移植物抗宿主病的诊治(附四例报告)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 846-851.
[13] 赵泽云, 李建男, 王旻. 中性粒细胞胞外诱捕网在结直肠癌中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 524-528.
[14] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[15] 徐靖亭, 孔璐. PARP抑制剂治疗卵巢癌的耐药机制及应对策略[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 584-588.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?