切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (06) : 520 -523. doi: 10.3877/cma.j.issn.1673-9450.2022.06.010

综述

真皮毛乳头细胞分离培养技术的研究进展
王运帷1, 罗亮1, 曹鹏1, 张清怡2, 李少珲1, 陈阳1, 官浩1,()   
  1. 1. 710032 西安,空军军医大学第一附属医院烧伤与皮肤外科,全军烧伤中心
    2. 710032 西安,空军军医大学基础医学院
  • 收稿日期:2022-09-22 出版日期:2022-12-01
  • 通信作者: 官浩
  • 基金资助:
    国家自然科学基金面上项目(81971834, 82272268); 空军军医大学第一附属医院学科助推项目(XJZT18MJ08)

Research progress of isolation and culture of dermal papilla cells

Yunwei Wang1, Liang Luo1, Peng Cao1, Qingyi Zhang2, Shaohui Li1, Yang Chen1, Hao Guan1,()   

  1. 1. Department of Burns and Cutaneous Surgery, Burn Center of PLA, First Affliated Hospital, Air Force Medical University, Xi′an 710032, China
    2. Basic Medical College, Air Force Medical University, Xi′an 710032, China
  • Received:2022-09-22 Published:2022-12-01
  • Corresponding author: Hao Guan
引用本文:

王运帷, 罗亮, 曹鹏, 张清怡, 李少珲, 陈阳, 官浩. 真皮毛乳头细胞分离培养技术的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2022, 17(06): 520-523.

Yunwei Wang, Liang Luo, Peng Cao, Qingyi Zhang, Shaohui Li, Yang Chen, Hao Guan. Research progress of isolation and culture of dermal papilla cells[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(06): 520-523.

真皮毛乳头细胞(DPC)对毛囊再生具有重要的调控作用,体外培养条件下,如何提高DPC的毛囊诱导能力,是毛囊再生研究迫切需要解决的问题。本文介绍了DPC对毛囊形态发生的作用,回顾了DPC分离提取发展历程,总结了DPC培养技术进展,以期为DPC诱导毛囊再生的研究提供细胞分离培养的筛选模型。

Dermal papilla cell (DPC) plays an important role in regulating hair follicle regeneration. Under the condition of in vitro culture, how to improve the hair follicle induction ability of DPC is an urgent problem to be solved in the study of hair follicle regeneration. This paper introduces the effect of DPC on hair follicle morphogenesis, reviews the development of isolation of DPC, and summarizes the progress of DPC culture technology. In order to provide a screening model for cell isolation and culture for the study of hair follicle regeneration induced by DPC.

[1]
de Groot SC, Ulrich MMW, Gho CG, et al. Back to the Future: From Appendage Development Toward Future Human Hair Follicle Neogenesis[J]. Front Cell Dev Biol, 2021, 12(9): 661787.
[2]
Ji S, Zhu Z, Sun X, et al. Functional hair follicle regeneration: an updated review[J]. Signal Transduct Target Ther, 2021, 6(1): 66.
[3]
Taghiabadi E, Nilforoushzadeh MA, Aghdami N. Maintaining Hair Inductivity in Human Dermal Papilla Cells: A Review of Effective Methods[J]. Skin Pharmacol Physiol, 2020, 33(5): 280-292.
[4]
Cohen J. The transplantation of individual rat and guineapig whisker papillae[J]. J Embryol Exp Morphol, 1961, 9: 117-127.
[5]
Jahoda CA, Horne KA, Oliver RF. Induction of hair growth by implantation of cultured dermal papilla cells[J]. Nature, 1984, 311(5986): 560-562.
[6]
Driskell RR, Lichtenberger BM, Hoste E, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair[J]. Nature, 2013, 504(7479): 277-281.
[7]
Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling[J]. Semin Cell Dev Biol, 2012, 23(8): 917-927.
[8]
Rezza A, Wang Z, Sennett R, et al. Signaling networks among stem cell precursors, transit-amplifying progenitors, and their niche in developing hair follicles[J]. Cell Rep, 2016, 14(12): 3001-3018.
[9]
CHASE HB, RAUCH R, SMITH VW. Critical stages of hair development and pigmentation in the mouse[J]. Physiol Zool, 1951, 24(1): 1-8.
[10]
COHEN J. The transplantation of individual rat and guineapig whisker papillae[J]. J Embryol Exp Morphol, 1961, 9: 117-127.
[11]
Oliver RF. The experimental induction of whisker growth in the hooded rat by implantation of dermal papillae[J]. J Embryol Exp Morphol, 1967, 18(1): 43-51.
[12]
Yang CC, Cotsarelis G. Review of hair follicle dermal cells[J]. J Dermatol Sci, 2010, 57(1): 2-11.
[13]
Yu L, Gou QL, Chang ML, et al. One-step collagenase I treatment: an efficient way for isolation and cultivation of human scalp dermal papilla cells[J]. J Dermatol Sci, 2005, 37(1): 58-60.
[14]
周洪军,胡志奇,谭挺,等. 人毛囊外根鞘隆起真皮鞘和毛乳头细胞高效同步分离培养的方法[J]. 南方医科大学学报2008, 28(2): 193-195.
[15]
Gledhill K, Gardner A, Jahoda CA. Isolation and establishment of hair follicle dermal papilla cell cultures[J]. Methods Mol Biol, 2013, 989: 285-292.
[16]
蔡博治,傅从从,陈乐,等. 人头皮毛乳头细胞体外培养方法及其不同代数形态学比较[J]. 现代医院2020, 20(8): 1200-1203.
[17]
Limbu S, Higgins CA. Isolating Dermal Papilla Cells from Human Hair Follicles Using Microdissection and Enzyme Digestion[J]. Methods Mol Biol, 2020, 2154: 91-103.
[18]
Osada A, Iwabuchi T, Kishimoto J, et al. Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction[J]. Tissue Eng, 2007, 13(5): 975-982.
[19]
Wang B, Liu XM, Liu ZN, et al. Human hair follicle-derived mesenchymal stem cells: Isolation, expansion, and differentiation[J]. World J Stem Cells, 2020, 12(6): 462-470.
[20]
Xiao S, Deng Y, Mo X, et al. Promotion of Hair Growth by Conditioned Medium from Extracellular Matrix/Stromal Vascular Fraction Gel in C57BL/6 Mice[J]. Stem Cells Int, 2020, 2020: 9054514.
[21]
Cao L, Tian T, Huang Y, et al. Neural progenitor cell-derived nanovesicles promote hair follicle growth via miR-100[J]. J Nanobiotechnology, 2021, 19(1): 20.
[22]
Won CH, Jeong YM, Kang S, et al. Hair-growth-promoting effect of conditioned medium of high integrin α6 and low CD 71 (α6bri/CD71dim) positive keratinocyte cells[J]. Int J Mol Sci, 2015, 16(3): 4379-4391.
[23]
Hu S, Li Z, Lutz H, et al. Dermal exosomes containing miR-218-5p promote hair regeneration by regulating β-catenin signaling[J]. Sci Adv, 2020, 6(30): eaba1685.
[24]
Rajendran RL, Gangadaran P, Seo CH, et al. Macrophage-Derived Extracellular Vesicle Promotes Hair Growth[J]. Cells, 2020, 9(4): 856.
[25]
Chan CC, Fan SM, Wang WH, et al. A Two-Stepped Culture Method for Efficient Production of Trichogenic Keratinocytes[J]. Tissue Eng Part C Methods, 2015, 21(10): 1070-1079.
[26]
Abreu CM, Cerqueira MT, Pirraco RP, et al. Rescuing key native traits in cultured dermal papilla cells for human hair Regeneration[J]. J Adv Res, 2020, 30: 103-112.
[27]
Veraitch O, Mabuchi Y, Matsuzaki Y, et al. Induction of hair follicle dermal papilla cell properties in human induced pluripotent stem cell-derived multipotent LNGFR(+)THY-1(+) mesenchymal cells[J]. Sci Rep, 2017, 7: 42777.
[28]
Tan JJY, Nguyen DV, Common JE, et al. Investigating PEGDA and GelMA Microgel Models for Sustained 3D Heterotypic Dermal Papilla and Keratinocyte Co-Cultures[J]. Int J Mol Sci, 2021, 22(4): 2143.
[29]
Ryu NE, Lee SH, Park H. Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells[J]. Cells, 2019, 8(12): 1620.
[30]
Huang YC, Chan CC, Lin WT, et al. Scalable production of controllable dermal papilla spheroids on pva surfaces and the effects of spheroid size on hair follicle regeneration[J]. Biomaterials, 2013, 34(2): 442-451.
[31]
Maritan SM, Lian EY, Mulligan LM. An Efficient and Flexible Cell Aggregation Method for 3D Spheroid Production[J]. J Vis Exp, 2017(121): 55544.
[32]
Anil-Inevi M, Yaman S, Yildiz AA, et al. Biofabrication of in situ Self Assembled 3D Cell Cultures in a Weightlessness Environment Generated using Magnetic Levitation[J]. Sci Rep, 2018, 8(1): 7239.
[33]
Dong L, Hao H, Liu J, et al. Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system[J]. J Tissue Eng Regen Med, 2017, 11(5): 1479-1489.
[34]
Lin B, Miao Y, Wang J, et al. Surface Tension Guided Hanging-Drop: Producing Controllable 3D Spheroid of High-Passaged Human Dermal Papilla Cells and Forming Inductive Microtissues for Hair-Follicle Regeneration[J]. ACS Appl Mater Interfaces, 2016, 8(9): 5906-5916.
[35]
Su Y, Wen J, Zhu J, et al. Pre-aggregation of scalp progenitor dermal and epidermal stem cells activates the WNT pathway and promotes hair follicle formation in in vitro and in vivo systems[J]. Stem Cell Res Ther, 2019, 10(1): 403.
[36]
Ibrahim MR, Medhat W, El-Fakahany, et al. The Developmental & Molecular Requirements for Ensuring that Human Pluripotent Stem Cell-Derived Hair Follicle Bulge Stem Cells Have Acquired Competence for Hair Follicle Generation Following Transplantation[J]. Cell Transplant, 2021, 30: 9636897211014820.
[37]
Fukuyama M, Tsukashima A, Kimishima M, et al. Human iPS Cell-Derived Cell Aggregates Exhibited Dermal Papilla Cell Properties in in vitro Three-Dimensional Assemblage Mimicking Hair Follicle Structures[J]. Front Cell Dev Biol, 2021, 9: 590333.
[38]
Lee J, Rabbani CC, Gao H, et al. Hair-bearing human skin generated entirely from pluripotent stem cells[J]. Nature, 2020, 582(7812): 399-404.
[39]
Castro AR, Logarinho E. Tissue engineering strategies for human hair follicle regeneration: how far from a hairy goal[J]. Stem Cells Transl Med, 2020, 9(3): 342-350.
[40]
Abaci HE, Coffman A, Doucet Y, et al. Tissue engineering of human hair follicles using a biomimetic developmental approach[J]. Nat Commun, 2018, 9(1): 5301.
[41]
Zhou L, Yang K, Xu M, et al. Activating beta-catenin signaling in CD133-positive dermal papilla cells increases hair inductivity[J]. FEBS J, 2016, 283(15): 2823-2835.
[42]
Dong L, Hao H, Liu J, et al. Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system[J]. J Tissue Eng Regen Med, 2017, 11(5): 1479-1489.
[43]
刘小敏. 脱细胞真皮三维培养高代毛乳头细胞模型的构建及评价[D]. 广州:南方医科大学,2018.
[44]
Wang J, Miao Y, Huang Y, et al. Bottom-up nanoencapsulation from single cells to tunable and scalable cellular spheroids for hair follicle regeneration[J]. Adv Healthc Mater, 2018, 7(3): 1-9.
[45]
Zhang X, Xiao S, Liu B, et al. Use of extracellular matrix hydrogel from human placenta to restore hair-inductive potential of dermal papilla cells[J]. Regen Med, 2019, 14(8): 741-751.
[46]
Vahav I, van den Broek LJ, Thon M, et al. Reconstructed human skin shows epidermal invagination towards integrated neopapillae indicating early hair follicle formation in vitro[J]. J Tissue Eng Regen Med, 2020, 14(6): 761-773.
[47]
Zhang K, Bai X, Yuan Z, et al. Cellular nanofifiber structure with secretory activity-promoting characteristics for multicellular spheroid formation and hair follicle regeneration[J]. ACS Appl Mater Interfaces, 2020, 12(7): 7931-7941.
[1] 杜华, 徐晓艳, 孙微, 海玲, 刘霞, 曹颖, 苏畅, 师迎旭. 乳腺癌研究中常用细胞系的特征及选择[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(02): 119-123.
[2] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[3] 刘高雨, 罗鹏, 史春梦. 成纤维细胞重编程与创面修复的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(02): 176-179.
[4] 李昊, 韦秀湘, 钟晓霞. 聚焦高黏附力骨黏合剂,促进口腔硬组织修复[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 1-4.
[5] 徐志清, 杜宇. 机械敏感离子通道在牙源性细胞中作用的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 54-60.
[6] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[7] 张心怡, 吕军好, 陈大进. 2023年肾移植领域研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(01): 7-11.
[8] 程茂波, 刘钰莎, 张旭, 刘文博, 赵鹏. 对再生型疝修补补片动物试验设计的考量[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 121-124.
[9] 仲卫冬, 仲洁, 代京, 程文悦, 张剑. 基底膜生物补片用于腹腔内修补大鼠腹壁缺损手术引导组织再生的研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 139-145.
[10] 万周程, 钟章锋, 钟侨霖, 王景浩, 刘婷, 王华军, 郑小飞. 中药有效成分结合生物材料在骨组织工程中作用的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 249-253.
[11] 王冰倩, 汪振星, 夏芸. 利用微小毛发模型验证α-倒捻子素在毛囊中的抗氧化特性的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 83-89.
[12] 赵敏廷, 张郭, 孙家明. 调节性T细胞与组织修复再生[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 51-55.
[13] 吴雪云, 胡小军, 范应方. 肝切除术中剩余肝再生能力的评估与预测[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 894-897.
[14] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[15] 张津, 李欣达, 徐如祥. 神经类器官在大脑常见疾病治疗中的应用及在脊髓损伤修复中的应用前景[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(05): 257-263.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?