[1] |
de Groot SC, Ulrich MMW, Gho CG, et al. Back to the Future: From Appendage Development Toward Future Human Hair Follicle Neogenesis[J]. Front Cell Dev Biol, 2021, 12(9): 661787.
|
[2] |
Ji S, Zhu Z, Sun X, et al. Functional hair follicle regeneration: an updated review[J]. Signal Transduct Target Ther, 2021, 6(1): 66.
|
[3] |
Taghiabadi E, Nilforoushzadeh MA, Aghdami N. Maintaining Hair Inductivity in Human Dermal Papilla Cells: A Review of Effective Methods[J]. Skin Pharmacol Physiol, 2020, 33(5): 280-292.
|
[4] |
Cohen J. The transplantation of individual rat and guineapig whisker papillae[J]. J Embryol Exp Morphol, 1961, 9: 117-127.
|
[5] |
Jahoda CA, Horne KA, Oliver RF. Induction of hair growth by implantation of cultured dermal papilla cells[J]. Nature, 1984, 311(5986): 560-562.
|
[6] |
Driskell RR, Lichtenberger BM, Hoste E, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair[J]. Nature, 2013, 504(7479): 277-281.
|
[7] |
Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling[J]. Semin Cell Dev Biol, 2012, 23(8): 917-927.
|
[8] |
Rezza A, Wang Z, Sennett R, et al. Signaling networks among stem cell precursors, transit-amplifying progenitors, and their niche in developing hair follicles[J]. Cell Rep, 2016, 14(12): 3001-3018.
|
[9] |
CHASE HB, RAUCH R, SMITH VW. Critical stages of hair development and pigmentation in the mouse[J]. Physiol Zool, 1951, 24(1): 1-8.
|
[10] |
COHEN J. The transplantation of individual rat and guineapig whisker papillae[J]. J Embryol Exp Morphol, 1961, 9: 117-127.
|
[11] |
Oliver RF. The experimental induction of whisker growth in the hooded rat by implantation of dermal papillae[J]. J Embryol Exp Morphol, 1967, 18(1): 43-51.
|
[12] |
Yang CC, Cotsarelis G. Review of hair follicle dermal cells[J]. J Dermatol Sci, 2010, 57(1): 2-11.
|
[13] |
Yu L, Gou QL, Chang ML, et al. One-step collagenase I treatment: an efficient way for isolation and cultivation of human scalp dermal papilla cells[J]. J Dermatol Sci, 2005, 37(1): 58-60.
|
[14] |
周洪军,胡志奇,谭挺,等. 人毛囊外根鞘隆起真皮鞘和毛乳头细胞高效同步分离培养的方法[J]. 南方医科大学学报,2008, 28(2): 193-195.
|
[15] |
Gledhill K, Gardner A, Jahoda CA. Isolation and establishment of hair follicle dermal papilla cell cultures[J]. Methods Mol Biol, 2013, 989: 285-292.
|
[16] |
蔡博治,傅从从,陈乐,等. 人头皮毛乳头细胞体外培养方法及其不同代数形态学比较[J]. 现代医院,2020, 20(8): 1200-1203.
|
[17] |
Limbu S, Higgins CA. Isolating Dermal Papilla Cells from Human Hair Follicles Using Microdissection and Enzyme Digestion[J]. Methods Mol Biol, 2020, 2154: 91-103.
|
[18] |
Osada A, Iwabuchi T, Kishimoto J, et al. Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction[J]. Tissue Eng, 2007, 13(5): 975-982.
|
[19] |
Wang B, Liu XM, Liu ZN, et al. Human hair follicle-derived mesenchymal stem cells: Isolation, expansion, and differentiation[J]. World J Stem Cells, 2020, 12(6): 462-470.
|
[20] |
Xiao S, Deng Y, Mo X, et al. Promotion of Hair Growth by Conditioned Medium from Extracellular Matrix/Stromal Vascular Fraction Gel in C57BL/6 Mice[J]. Stem Cells Int, 2020, 2020: 9054514.
|
[21] |
Cao L, Tian T, Huang Y, et al. Neural progenitor cell-derived nanovesicles promote hair follicle growth via miR-100[J]. J Nanobiotechnology, 2021, 19(1): 20.
|
[22] |
Won CH, Jeong YM, Kang S, et al. Hair-growth-promoting effect of conditioned medium of high integrin α6 and low CD 71 (α6bri/CD71dim) positive keratinocyte cells[J]. Int J Mol Sci, 2015, 16(3): 4379-4391.
|
[23] |
Hu S, Li Z, Lutz H, et al. Dermal exosomes containing miR-218-5p promote hair regeneration by regulating β-catenin signaling[J]. Sci Adv, 2020, 6(30): eaba1685.
|
[24] |
Rajendran RL, Gangadaran P, Seo CH, et al. Macrophage-Derived Extracellular Vesicle Promotes Hair Growth[J]. Cells, 2020, 9(4): 856.
|
[25] |
Chan CC, Fan SM, Wang WH, et al. A Two-Stepped Culture Method for Efficient Production of Trichogenic Keratinocytes[J]. Tissue Eng Part C Methods, 2015, 21(10): 1070-1079.
|
[26] |
Abreu CM, Cerqueira MT, Pirraco RP, et al. Rescuing key native traits in cultured dermal papilla cells for human hair Regeneration[J]. J Adv Res, 2020, 30: 103-112.
|
[27] |
Veraitch O, Mabuchi Y, Matsuzaki Y, et al. Induction of hair follicle dermal papilla cell properties in human induced pluripotent stem cell-derived multipotent LNGFR(+)THY-1(+) mesenchymal cells[J]. Sci Rep, 2017, 7: 42777.
|
[28] |
Tan JJY, Nguyen DV, Common JE, et al. Investigating PEGDA and GelMA Microgel Models for Sustained 3D Heterotypic Dermal Papilla and Keratinocyte Co-Cultures[J]. Int J Mol Sci, 2021, 22(4): 2143.
|
[29] |
Ryu NE, Lee SH, Park H. Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells[J]. Cells, 2019, 8(12): 1620.
|
[30] |
Huang YC, Chan CC, Lin WT, et al. Scalable production of controllable dermal papilla spheroids on pva surfaces and the effects of spheroid size on hair follicle regeneration[J]. Biomaterials, 2013, 34(2): 442-451.
|
[31] |
Maritan SM, Lian EY, Mulligan LM. An Efficient and Flexible Cell Aggregation Method for 3D Spheroid Production[J]. J Vis Exp, 2017(121): 55544.
|
[32] |
Anil-Inevi M, Yaman S, Yildiz AA, et al. Biofabrication of in situ Self Assembled 3D Cell Cultures in a Weightlessness Environment Generated using Magnetic Levitation[J]. Sci Rep, 2018, 8(1): 7239.
|
[33] |
Dong L, Hao H, Liu J, et al. Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system[J]. J Tissue Eng Regen Med, 2017, 11(5): 1479-1489.
|
[34] |
Lin B, Miao Y, Wang J, et al. Surface Tension Guided Hanging-Drop: Producing Controllable 3D Spheroid of High-Passaged Human Dermal Papilla Cells and Forming Inductive Microtissues for Hair-Follicle Regeneration[J]. ACS Appl Mater Interfaces, 2016, 8(9): 5906-5916.
|
[35] |
Su Y, Wen J, Zhu J, et al. Pre-aggregation of scalp progenitor dermal and epidermal stem cells activates the WNT pathway and promotes hair follicle formation in in vitro and in vivo systems[J]. Stem Cell Res Ther, 2019, 10(1): 403.
|
[36] |
Ibrahim MR, Medhat W, El-Fakahany, et al. The Developmental & Molecular Requirements for Ensuring that Human Pluripotent Stem Cell-Derived Hair Follicle Bulge Stem Cells Have Acquired Competence for Hair Follicle Generation Following Transplantation[J]. Cell Transplant, 2021, 30: 9636897211014820.
|
[37] |
Fukuyama M, Tsukashima A, Kimishima M, et al. Human iPS Cell-Derived Cell Aggregates Exhibited Dermal Papilla Cell Properties in in vitro Three-Dimensional Assemblage Mimicking Hair Follicle Structures[J]. Front Cell Dev Biol, 2021, 9: 590333.
|
[38] |
Lee J, Rabbani CC, Gao H, et al. Hair-bearing human skin generated entirely from pluripotent stem cells[J]. Nature, 2020, 582(7812): 399-404.
|
[39] |
Castro AR, Logarinho E. Tissue engineering strategies for human hair follicle regeneration: how far from a hairy goal[J]. Stem Cells Transl Med, 2020, 9(3): 342-350.
|
[40] |
Abaci HE, Coffman A, Doucet Y, et al. Tissue engineering of human hair follicles using a biomimetic developmental approach[J]. Nat Commun, 2018, 9(1): 5301.
|
[41] |
Zhou L, Yang K, Xu M, et al. Activating beta-catenin signaling in CD133-positive dermal papilla cells increases hair inductivity[J]. FEBS J, 2016, 283(15): 2823-2835.
|
[42] |
Dong L, Hao H, Liu J, et al. Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system[J]. J Tissue Eng Regen Med, 2017, 11(5): 1479-1489.
|
[43] |
刘小敏. 脱细胞真皮三维培养高代毛乳头细胞模型的构建及评价[D]. 广州:南方医科大学,2018.
|
[44] |
Wang J, Miao Y, Huang Y, et al. Bottom-up nanoencapsulation from single cells to tunable and scalable cellular spheroids for hair follicle regeneration[J]. Adv Healthc Mater, 2018, 7(3): 1-9.
|
[45] |
Zhang X, Xiao S, Liu B, et al. Use of extracellular matrix hydrogel from human placenta to restore hair-inductive potential of dermal papilla cells[J]. Regen Med, 2019, 14(8): 741-751.
|
[46] |
Vahav I, van den Broek LJ, Thon M, et al. Reconstructed human skin shows epidermal invagination towards integrated neopapillae indicating early hair follicle formation in vitro[J]. J Tissue Eng Regen Med, 2020, 14(6): 761-773.
|
[47] |
Zhang K, Bai X, Yuan Z, et al. Cellular nanofifiber structure with secretory activity-promoting characteristics for multicellular spheroid formation and hair follicle regeneration[J]. ACS Appl Mater Interfaces, 2020, 12(7): 7931-7941.
|