切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2022, Vol. 17 ›› Issue (06) : 520 -523. doi: 10.3877/cma.j.issn.1673-9450.2022.06.010

综述

真皮毛乳头细胞分离培养技术的研究进展
王运帷1, 罗亮1, 曹鹏1, 张清怡2, 李少珲1, 陈阳1, 官浩1,()   
  1. 1. 710032 西安,空军军医大学第一附属医院烧伤与皮肤外科,全军烧伤中心
    2. 710032 西安,空军军医大学基础医学院
  • 收稿日期:2022-09-22 出版日期:2022-12-01
  • 通信作者: 官浩
  • 基金资助:
    国家自然科学基金面上项目(81971834, 82272268); 空军军医大学第一附属医院学科助推项目(XJZT18MJ08)

Research progress of isolation and culture of dermal papilla cells

Yunwei Wang1, Liang Luo1, Peng Cao1, Qingyi Zhang2, Shaohui Li1, Yang Chen1, Hao Guan1,()   

  1. 1. Department of Burns and Cutaneous Surgery, Burn Center of PLA, First Affliated Hospital, Air Force Medical University, Xi′an 710032, China
    2. Basic Medical College, Air Force Medical University, Xi′an 710032, China
  • Received:2022-09-22 Published:2022-12-01
  • Corresponding author: Hao Guan
引用本文:

王运帷, 罗亮, 曹鹏, 张清怡, 李少珲, 陈阳, 官浩. 真皮毛乳头细胞分离培养技术的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 520-523.

Yunwei Wang, Liang Luo, Peng Cao, Qingyi Zhang, Shaohui Li, Yang Chen, Hao Guan. Research progress of isolation and culture of dermal papilla cells[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2022, 17(06): 520-523.

真皮毛乳头细胞(DPC)对毛囊再生具有重要的调控作用,体外培养条件下,如何提高DPC的毛囊诱导能力,是毛囊再生研究迫切需要解决的问题。本文介绍了DPC对毛囊形态发生的作用,回顾了DPC分离提取发展历程,总结了DPC培养技术进展,以期为DPC诱导毛囊再生的研究提供细胞分离培养的筛选模型。

Dermal papilla cell (DPC) plays an important role in regulating hair follicle regeneration. Under the condition of in vitro culture, how to improve the hair follicle induction ability of DPC is an urgent problem to be solved in the study of hair follicle regeneration. This paper introduces the effect of DPC on hair follicle morphogenesis, reviews the development of isolation of DPC, and summarizes the progress of DPC culture technology. In order to provide a screening model for cell isolation and culture for the study of hair follicle regeneration induced by DPC.

[1]
de Groot SC, Ulrich MMW, Gho CG, et al. Back to the Future: From Appendage Development Toward Future Human Hair Follicle Neogenesis[J]. Front Cell Dev Biol, 2021, 12(9): 661787.
[2]
Ji S, Zhu Z, Sun X, et al. Functional hair follicle regeneration: an updated review[J]. Signal Transduct Target Ther, 2021, 6(1): 66.
[3]
Taghiabadi E, Nilforoushzadeh MA, Aghdami N. Maintaining Hair Inductivity in Human Dermal Papilla Cells: A Review of Effective Methods[J]. Skin Pharmacol Physiol, 2020, 33(5): 280-292.
[4]
Cohen J. The transplantation of individual rat and guineapig whisker papillae[J]. J Embryol Exp Morphol, 1961, 9: 117-127.
[5]
Jahoda CA, Horne KA, Oliver RF. Induction of hair growth by implantation of cultured dermal papilla cells[J]. Nature, 1984, 311(5986): 560-562.
[6]
Driskell RR, Lichtenberger BM, Hoste E, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair[J]. Nature, 2013, 504(7479): 277-281.
[7]
Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling[J]. Semin Cell Dev Biol, 2012, 23(8): 917-927.
[8]
Rezza A, Wang Z, Sennett R, et al. Signaling networks among stem cell precursors, transit-amplifying progenitors, and their niche in developing hair follicles[J]. Cell Rep, 2016, 14(12): 3001-3018.
[9]
CHASE HB, RAUCH R, SMITH VW. Critical stages of hair development and pigmentation in the mouse[J]. Physiol Zool, 1951, 24(1): 1-8.
[10]
COHEN J. The transplantation of individual rat and guineapig whisker papillae[J]. J Embryol Exp Morphol, 1961, 9: 117-127.
[11]
Oliver RF. The experimental induction of whisker growth in the hooded rat by implantation of dermal papillae[J]. J Embryol Exp Morphol, 1967, 18(1): 43-51.
[12]
Yang CC, Cotsarelis G. Review of hair follicle dermal cells[J]. J Dermatol Sci, 2010, 57(1): 2-11.
[13]
Yu L, Gou QL, Chang ML, et al. One-step collagenase I treatment: an efficient way for isolation and cultivation of human scalp dermal papilla cells[J]. J Dermatol Sci, 2005, 37(1): 58-60.
[14]
周洪军,胡志奇,谭挺,等. 人毛囊外根鞘隆起真皮鞘和毛乳头细胞高效同步分离培养的方法[J]. 南方医科大学学报2008, 28(2): 193-195.
[15]
Gledhill K, Gardner A, Jahoda CA. Isolation and establishment of hair follicle dermal papilla cell cultures[J]. Methods Mol Biol, 2013, 989: 285-292.
[16]
蔡博治,傅从从,陈乐,等. 人头皮毛乳头细胞体外培养方法及其不同代数形态学比较[J]. 现代医院2020, 20(8): 1200-1203.
[17]
Limbu S, Higgins CA. Isolating Dermal Papilla Cells from Human Hair Follicles Using Microdissection and Enzyme Digestion[J]. Methods Mol Biol, 2020, 2154: 91-103.
[18]
Osada A, Iwabuchi T, Kishimoto J, et al. Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction[J]. Tissue Eng, 2007, 13(5): 975-982.
[19]
Wang B, Liu XM, Liu ZN, et al. Human hair follicle-derived mesenchymal stem cells: Isolation, expansion, and differentiation[J]. World J Stem Cells, 2020, 12(6): 462-470.
[20]
Xiao S, Deng Y, Mo X, et al. Promotion of Hair Growth by Conditioned Medium from Extracellular Matrix/Stromal Vascular Fraction Gel in C57BL/6 Mice[J]. Stem Cells Int, 2020, 2020: 9054514.
[21]
Cao L, Tian T, Huang Y, et al. Neural progenitor cell-derived nanovesicles promote hair follicle growth via miR-100[J]. J Nanobiotechnology, 2021, 19(1): 20.
[22]
Won CH, Jeong YM, Kang S, et al. Hair-growth-promoting effect of conditioned medium of high integrin α6 and low CD 71 (α6bri/CD71dim) positive keratinocyte cells[J]. Int J Mol Sci, 2015, 16(3): 4379-4391.
[23]
Hu S, Li Z, Lutz H, et al. Dermal exosomes containing miR-218-5p promote hair regeneration by regulating β-catenin signaling[J]. Sci Adv, 2020, 6(30): eaba1685.
[24]
Rajendran RL, Gangadaran P, Seo CH, et al. Macrophage-Derived Extracellular Vesicle Promotes Hair Growth[J]. Cells, 2020, 9(4): 856.
[25]
Chan CC, Fan SM, Wang WH, et al. A Two-Stepped Culture Method for Efficient Production of Trichogenic Keratinocytes[J]. Tissue Eng Part C Methods, 2015, 21(10): 1070-1079.
[26]
Abreu CM, Cerqueira MT, Pirraco RP, et al. Rescuing key native traits in cultured dermal papilla cells for human hair Regeneration[J]. J Adv Res, 2020, 30: 103-112.
[27]
Veraitch O, Mabuchi Y, Matsuzaki Y, et al. Induction of hair follicle dermal papilla cell properties in human induced pluripotent stem cell-derived multipotent LNGFR(+)THY-1(+) mesenchymal cells[J]. Sci Rep, 2017, 7: 42777.
[28]
Tan JJY, Nguyen DV, Common JE, et al. Investigating PEGDA and GelMA Microgel Models for Sustained 3D Heterotypic Dermal Papilla and Keratinocyte Co-Cultures[J]. Int J Mol Sci, 2021, 22(4): 2143.
[29]
Ryu NE, Lee SH, Park H. Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells[J]. Cells, 2019, 8(12): 1620.
[30]
Huang YC, Chan CC, Lin WT, et al. Scalable production of controllable dermal papilla spheroids on pva surfaces and the effects of spheroid size on hair follicle regeneration[J]. Biomaterials, 2013, 34(2): 442-451.
[31]
Maritan SM, Lian EY, Mulligan LM. An Efficient and Flexible Cell Aggregation Method for 3D Spheroid Production[J]. J Vis Exp, 2017(121): 55544.
[32]
Anil-Inevi M, Yaman S, Yildiz AA, et al. Biofabrication of in situ Self Assembled 3D Cell Cultures in a Weightlessness Environment Generated using Magnetic Levitation[J]. Sci Rep, 2018, 8(1): 7239.
[33]
Dong L, Hao H, Liu J, et al. Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system[J]. J Tissue Eng Regen Med, 2017, 11(5): 1479-1489.
[34]
Lin B, Miao Y, Wang J, et al. Surface Tension Guided Hanging-Drop: Producing Controllable 3D Spheroid of High-Passaged Human Dermal Papilla Cells and Forming Inductive Microtissues for Hair-Follicle Regeneration[J]. ACS Appl Mater Interfaces, 2016, 8(9): 5906-5916.
[35]
Su Y, Wen J, Zhu J, et al. Pre-aggregation of scalp progenitor dermal and epidermal stem cells activates the WNT pathway and promotes hair follicle formation in in vitro and in vivo systems[J]. Stem Cell Res Ther, 2019, 10(1): 403.
[36]
Ibrahim MR, Medhat W, El-Fakahany, et al. The Developmental & Molecular Requirements for Ensuring that Human Pluripotent Stem Cell-Derived Hair Follicle Bulge Stem Cells Have Acquired Competence for Hair Follicle Generation Following Transplantation[J]. Cell Transplant, 2021, 30: 9636897211014820.
[37]
Fukuyama M, Tsukashima A, Kimishima M, et al. Human iPS Cell-Derived Cell Aggregates Exhibited Dermal Papilla Cell Properties in in vitro Three-Dimensional Assemblage Mimicking Hair Follicle Structures[J]. Front Cell Dev Biol, 2021, 9: 590333.
[38]
Lee J, Rabbani CC, Gao H, et al. Hair-bearing human skin generated entirely from pluripotent stem cells[J]. Nature, 2020, 582(7812): 399-404.
[39]
Castro AR, Logarinho E. Tissue engineering strategies for human hair follicle regeneration: how far from a hairy goal[J]. Stem Cells Transl Med, 2020, 9(3): 342-350.
[40]
Abaci HE, Coffman A, Doucet Y, et al. Tissue engineering of human hair follicles using a biomimetic developmental approach[J]. Nat Commun, 2018, 9(1): 5301.
[41]
Zhou L, Yang K, Xu M, et al. Activating beta-catenin signaling in CD133-positive dermal papilla cells increases hair inductivity[J]. FEBS J, 2016, 283(15): 2823-2835.
[42]
Dong L, Hao H, Liu J, et al. Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system[J]. J Tissue Eng Regen Med, 2017, 11(5): 1479-1489.
[43]
刘小敏. 脱细胞真皮三维培养高代毛乳头细胞模型的构建及评价[D]. 广州:南方医科大学,2018.
[44]
Wang J, Miao Y, Huang Y, et al. Bottom-up nanoencapsulation from single cells to tunable and scalable cellular spheroids for hair follicle regeneration[J]. Adv Healthc Mater, 2018, 7(3): 1-9.
[45]
Zhang X, Xiao S, Liu B, et al. Use of extracellular matrix hydrogel from human placenta to restore hair-inductive potential of dermal papilla cells[J]. Regen Med, 2019, 14(8): 741-751.
[46]
Vahav I, van den Broek LJ, Thon M, et al. Reconstructed human skin shows epidermal invagination towards integrated neopapillae indicating early hair follicle formation in vitro[J]. J Tissue Eng Regen Med, 2020, 14(6): 761-773.
[47]
Zhang K, Bai X, Yuan Z, et al. Cellular nanofifiber structure with secretory activity-promoting characteristics for multicellular spheroid formation and hair follicle regeneration[J]. ACS Appl Mater Interfaces, 2020, 12(7): 7931-7941.
[1] 李硕, 尹希, 祁连港, 王丽, 刘宗宝. 浓缩生长因子在促进失神经皮瓣术后神经再生的应用前景[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 547-551.
[2] 尚强强, 王凌峰, 巴特, 曹胜军, 周彪, 李全, 侯智慧, 闫增强, 陈强. 外泌型汗腺参与创面愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 450-453.
[3] 宫镇江, 王守一, 姚超, 庞永志, 崔婧. sticky bone混合浓缩生长因子应用于水平骨增量患者的临床效果研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 430-435.
[4] 王军辉, 胡颖, 刘芳, 王飞, 陈宇江, 王小竞. 浓缩生长因子用于年轻恒牙根尖周炎再生性牙髓治疗2例及文献复习[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 81-88.
[5] 毛学理, 施松涛. 牙髓干细胞与牙髓再生[J]. 中华口腔医学研究杂志(电子版), 2022, 16(06): 333-342.
[6] 陈孟竺, 韦小浪, 陈文霞. 神经肽P物质对人牙髓干细胞生物学行为的影响[J]. 中华口腔医学研究杂志(电子版), 2022, 16(06): 343-351.
[7] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[8] 张修源, 吕军好, 陈大进. 2022年肾移植领域研究进展[J]. 中华移植杂志(电子版), 2023, 17(01): 32-35.
[9] 陈善良, 赵霜梅, 许莉, 厉泉, 苗强, 李敏, 李红昕, 刘天起. 心脏移植术后人类微小病毒B19感染致纯红细胞再生障碍性贫血三例并文献复习[J]. 中华移植杂志(电子版), 2022, 16(05): 299-301.
[10] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[11] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[12] 李芸芸, 吴涛, 毛东锋, 鱼玲玲, 刘文慧. 轻型β-地中海贫血供者异基因造血干细胞移植治疗重型再生障碍性贫血1例[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 84-86.
[13] 赵子祯, 严紫娟, 王家传. 脑类器官培养技术进展及其在缺血性脑卒中损伤修复中的应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 121-128.
[14] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[15] 高雅浩, 姜迪, 安刚, 靳峰, 崔昌萌. 不同细胞来源的外泌体在神经损伤中的作用[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(05): 306-309.
阅读次数
全文


摘要