[1] |
Rhett JM, Ghatnekar GS, Palatinus JA, et al. Novel therapies for scar reduction and regenerative healing of skin wounds[J]. Trends Biotechnol, 2008, 26(4): 173-180.
|
[2] |
努尔兰·吐尔逊,刘小龙,买斯吾提·买买提,等. 多种皮瓣修复难愈性创面[J/CD]. 中华损伤与修复杂志(电子版), 2013, 8(6): 49-51.
|
[3] |
尹凯,申传安,尚玉茹,等. 人表皮生长因子基因修饰细胞在创面修复中作用的研究进展[J/CD]. 中华损伤与修复杂志(电子版), 2014, 9(6): 672-675.
|
[4] |
Xi J, Yan X, Zhou J, et al. Mesenchymal stem cells in tissue repairing and regeneration: Progress and future[J]. Burns Trauma, 2013, 1(1): 13-20.
|
[5] |
Chae DS, Han S, Son M, et al. Stromal vascular fraction shows robust wound healing through high chemotactic and epithelialization property[J]. Cytotherapy, 2017, 19(4): 543-554.
|
[6] |
Ribeiro J, Pereira T, Amorim I, et al. Cell therapy with human MSCs isolated from the umbilical cord Wharton jelly associated to a PVA membrane in the treatment of chronic skin wounds[J]. Int J Med Sci, 2014, 11(10): 979-987.
|
[7] |
Xu X, Zhu F, Zhang M, et al. Stromal cell-derived factor-1 enhances wound healing through recruiting bone marrow-derived mesenchymal stem cells to the wound area and promoting neovascularization[J]. Cells Tissues Organs, 2013, 197(2): 103-113.
|
[8] |
Sarkar A, Tatlidede S, Scherer SS, et al. Combination of stromal cell-derived factor-1 and collagen-glycosaminoglycan scaffold delays contraction and accelerates reepithelialization of dermal wounds in wild-type mice[J]. Wound Repair Regen, 2011, 19(1): 71-79.
|
[9] |
Petty JM, Sueblinvong V, Lenox CC, et al. Pulmonary stromal-derived factor-1 expression and effect on neutrophil recruitment during acute lung injury[J]. J Immunol, 2007, 178(12): 8148-8157.
|
[10] |
Liu H, Liu H, Deng X, et al. CXCR4 antagonist delivery on decellularized skin scaffold facilitates impaired wound healing in diabetic mice by increasing expression of SDF-1 and enhancing migration of CXCR4-positive cells[J]. Wound Repair Regen, 2017, 25(4): 652-664.
|
[11] |
Ridiandries A, Tan JTM, Bursill CA. The Role of Chemokines in Wound Healing[J]. Int J Mol Sci, 2018, 19(10). pii: E3217.
|
[12] |
Yeboah A, Maguire T, Schloss R, et al. Stromal Cell-Derived Growth Factor-1 Alpha-Elastin Like Peptide Fusion Protein Promotes Cell Migration and Revascularization of Experimental Wounds in Diabetic Mice[J]. Adv Wound Care (New Rochelle), 2017, 6(1): 10-22.
|
[13] |
Krieger JR, Ogle ME, McFaline-Figueroa J, et al. Spatially localized recruitment of anti-inflammatory monocytes by SDF-1alpha-releasing hydrogels enhances microvascular network remodeling[J]. Biomaterials, 2016, 77: 280-290.
|
[14] |
Restivo TE, Mace KA, Harken AH. Application of the chemokine CXCL12 expression plasmid restores wound healing to near normal in a diabetic mouse model[J]. J Trauma, 2010, 69(2): 392-398.
|
[15] |
Florin L, Maas-Szabowski N, Werner S, et al. Increased keratinocyte proliferation by JUN-dependent expression of PTN and SDF-1 in fibroblasts[J]. J Cell Sci, 2005, 118(Pt 9): 1981-1989.
|
[16] |
Kitano T, Yamada H, Kida M, et al. Impaired Healing of a Cutaneous Wound in an Inducible Nitric Oxide Synthase-Knockout Mouse[J]. Dermatol Res Pract, 2017, 2017: 2184040.
|
[17] |
Chen L, Mirza R, Kwon Y, et al. The murine excisional wound model: Contraction revisited[J]. Wound Repair Regen, 2015, 23(6): 874-877.
|