切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2020, Vol. 15 ›› Issue (01) : 10 -17. doi: 10.3877/cma.j.issn.1673-9450.2020.01.003

所属专题: 文献

论著

丙戊酸钠对重度烧冲复合伤休克延迟补液大鼠内脏组织灌流和生存率的影响
吴育寿1, 岳晓彤1, 柴家科2,(), 畅阳2, 刘玲英2, 刘伟1, 韩绍芳2, 王晓腾2, 胡森3   
  1. 1. 100853 北京,解放军医学院研究生院;100048 北京,解放军总医院第四医学中心全军烧伤研究所
    2. 100048 北京,解放军总医院第四医学中心全军烧伤研究所
    3. 100853 北京,解放军总医院医学创新研究部创伤修复与组织再生研究中心
  • 收稿日期:2019-12-13 出版日期:2020-02-01
  • 通信作者: 柴家科
  • 基金资助:
    军委后勤保障部重大项目(AWS15J003,ALB19J001); 国家自然科学基金面上项目(81471872,81571894,81772067)

Effect of sodium valproate on visceral tissue perfusion and survival rates in rats with delayed fluid resuscitation after severe burn-blast combined injury

Yushou Wu1, Xiaotong Yue1, Jiake Chai2,(), Yang Chang2, Lingying Liu2, Wei Liu1, Shaofang Han2, Xiaoteng Wang2, Sen Hu3   

  1. 1. Department of Graduate, Medical School of Chinese PLA, Beijing 100853, China;Burn Institute, Fourth Medical Center of PLA General Hospital, Beijing 100048, China
    2. Department of Graduate, Medical School of Chinese PLA, Beijing 100853, China
    3. Research Center of Trauma Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100853, China
  • Received:2019-12-13 Published:2020-02-01
  • Corresponding author: Jiake Chai
  • About author:
    Corresponding author: Chai Jiake, Email:
引用本文:

吴育寿, 岳晓彤, 柴家科, 畅阳, 刘玲英, 刘伟, 韩绍芳, 王晓腾, 胡森. 丙戊酸钠对重度烧冲复合伤休克延迟补液大鼠内脏组织灌流和生存率的影响[J]. 中华损伤与修复杂志(电子版), 2020, 15(01): 10-17.

Yushou Wu, Xiaotong Yue, Jiake Chai, Yang Chang, Lingying Liu, Wei Liu, Shaofang Han, Xiaoteng Wang, Sen Hu. Effect of sodium valproate on visceral tissue perfusion and survival rates in rats with delayed fluid resuscitation after severe burn-blast combined injury[J]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2020, 15(01): 10-17.

目的

探讨丙戊酸钠对重度烧冲复合伤休克延迟补液大鼠内脏组织灌流和生存率的影响。

方法

共360只雄性SD大鼠,(1)实验一,选择300只大鼠,按照随机数字表法分为假伤+延迟补液组(SD组,n=50)、假伤+丙戊酸钠+延迟补液组(SPD组,n=50)、烧冲复合伤+延迟补液组(BD组,n=100)、烧冲复合伤+丙戊酸钠+延迟补液组(BPD组,n=100)。SD组和SPD组大鼠37 ℃水浴浸泡背部12 s,腹部6 s;BD组和BPD组先用5 g高爆炸药距离大鼠50 cm爆炸致中度冲击伤,然后立即94 ℃沸水浸泡背部12 s,腹部6 s,致50%总体表面积Ⅲ度烧伤;SPD组和BPD组伤后即刻皮下注射丙戊酸钠(300 mg/kg)。SD组、SPD组、BPD组和BD组于伤后6、24 h分别按照Parkland公式腹腔内注射0.9%氯化钠溶液进行补液。于伤后即刻,伤后6、24、48、72 h 5个时间点,每个时间点均从SD组、SPD组、BD组、BPD组选择10、10、20、20只大鼠进行各脏器血流量和血气分析。(2)实验二,选取剩余的60只大鼠,按随机数字表法也分为SD组(n=10)、SPD组(n=10)、BD组(n=20)、BPD组(n=20)。于造模前48 h进行颈动脉置管。各组大鼠造模、处理同实验一操作。于伤后即刻,伤后6、24、48、72 h 5个时间点,检测各组大鼠平均动脉压(MAP),同时计算各组大鼠生存率。数据比较采用单因素方差分析、t检验、log-rank检验和χ2检验。

结果

实验一结果显示:(1)伤后即刻,4组肝脏、肾脏和小肠黏膜血流量比较,差异均无统计学意义(P值均大于0.05);伤后6 h,4组肝脏、肾脏和小肠黏膜血流量组间总体比较,差异均有统计学意义(F=463.45、267.27、449.64,P值均小于0.05),BPD组与BD组肝脏、肾脏和小肠黏膜血流量比较,差异均无统计学意义(P值均大于0.05);伤后24 h,4组肝脏、肾脏和小肠黏膜血流量组间总体比较,差异均有统计学意义(F=1 347.52、125.23、1 210.84,P值均小于0.05),BPD组与BD组肝脏、肾脏和小肠黏膜血流量比较,差异均有统计学意义(t=89.72、6.57、10.23,P值均小于0.05);伤后48 h,4组肝脏、肾脏和小肠黏膜血流量组间总体比较,差异均有统计学意义(F=1 044.13、20.69、174.35,P值均小于0.05),BPD组与BD组肝脏和小肠黏膜血流量比较,差异均有统计学意义(t=51.90、34.72,P值均小于0.05),肾脏血流量比较差异无统计学意义(t=0.37,P>0.05);伤后72 h,4组肝脏、肾脏血流量组间总体比较,差异均有统计学意义(F=328.27,16.01,P值均小于0.05),小肠黏膜血流量比较,差异无统计学意义(P>0.05),BPD组与BD组肝脏血流量比较,差异有统计学意义(t=25.32,P<0.05),肾脏血流量比较,差异无统计学意义(P>0.05)。(2)伤后即刻和伤后48 h,4组pH值组间总体比较,差异均无统计学意义(P值均大于0.05);伤后6、24、72 h,4组pH值组间总体比较,差异均有统计学意义(F=54.48、5.68、1.98,P值均小于0.05),伤后6、24 h,BPD组与BD组pH值比较差异均有统计学意义(t=5.32、3.51,P值均小于0.05),伤后72 h,2组pH值比较差异无统计学意义(P>0.05);伤后即刻、伤后6、24 h,4组氧分压组间总体比较,差异均有统计学意义(F=26.55、16.34、2.37,P值均小于0.05),伤后即刻BPD组和BD组氧分压比较差异无统计学意义(P>0.05),伤后6、24 h 2组比较差异均有统计学意义(t=4.58、0.62,P值均小于0.05);伤后48、72 h,4组血乳酸组间总体比较,差异均无统计学意义(P值均大于0.05),伤后即刻、伤后6、24 h,4组血乳酸总体比较,差异均有统计学意义(F=3.12、61.67、50.83,P值均小于0.05),伤后即刻BPD组和BD组氧分压比较,差异无统计学意义(P>0.05),伤后6、24 h, 2组比较差异均有统计学意义(t=6.98、3.56,P值均小于0.05)。实验二结果显示:(1)伤后即刻和伤后72 h,4组MAP总体比较差异均无统计学意义(P值均大于0.05),伤后6、24、48 h,4组MAP总体比较差异均有统计学意义(F=292.73、104.29、5.01,P值均小于0.05),BPD组与BP组MAP比较,差异均有统计学差异(t=6.02、6.70、1.24,P值均小于0.05)。(2)伤后72 h,BPD组和BD组的生存率分别为70%和50%,2组比较差异有统计学意义(χ2=11.03,P<0.05)。

结论

丙戊酸钠复合延迟补液能显著增加重度烧冲复合伤休克大鼠肝脏、肾脏和肠道血流灌注,维持伤后早期的血压稳定,降低血乳酸水平,改善伤后72 h存活率。

Objective

To investigate the effects of sodium valproate on visceral tissue perfusion and survival rate of abdominal organs in rats with delayed fluid resuscitation after severe burn-blast combined injury.

Methods

A total of 360 male SD rats, (1) Experiment one, 300 rats were selected and divided into sham injury + delayed fluid resuscitation group (SD group, n=50), sham injury + sodium valproate + delayed fluid resuscitation group (SPD group, n=50), burn-rush combined injury + delayed fluid resuscitation group (BD group, n=100) and burn-rush combined injury + sodium valproate + delayed fluid resuscitation group (BPD group, n=100) according to the random number table method. The SD group and SPD group were soaked the back of rats in the 37 ℃ water for 12 s and the abdomen for 6 s. The BD group and BPD group were blasted with 5 g high explosive at a distance of 50 cm from the rat to cause moderate impact injury, and then immediately immersed the back of rats in boiling water at 94 ℃ for 12 s, abdominal for 6 s, causing 50% total body surface area of full thickness burns. SPD group and BPD group were injected subcutaneously with sodium valproate (300 mg/kg) immediately after injury. SD group, SPD group, BPD group and BD group were injected intraperitoneally with 0.9% sodium chloride solution according to the Parkland formula at 6, 24 h after injury for rehydration. Immediately after the injury, 6, 24, 48, 72 h after injury, each time point 10, 10, 20, 20 rats were selected from the SD group, SPD group, BD group, BPD group for visceral blood flow and blood gas analysis. (2)Experiment two, the rest of the 60 rats were divided into 4 groups according to the random number table method: SD group(n=10), SPD group(n=10), BD group(n=20) and BPD group(n=20). The modeling and treatment of the rats in each group was the same as experiment one. Carotid arteries were placed in all rats 48 h before modeling. The mean arterial pressure (MAP) of rats in each group was measured at 5 time points immediately after injury and at 6, 24, 48, 72 h after injury, and the survival rate of each group was also calculated. Data were processed with one-way analysis of variance, t text, the log-rank test and χ2 test.

Results

The results of experiment one showed: (1) Immediately after injury, there were no statistically significant differences in the blood flow of liver, kidney and small intestine mucosa in the 4 groups (with P values above 0.05). At 6 h after injury, the SD group, SPD group, BD group, and BPD group had statistically significant differences in overall comparison of the liver, kidney, and small intestinal mucosal blood flow groups (F=463.45, 267.27, 449.64; with P values below 0.05). There were no statistically significant differences in blood flow of liver, kidney and small intestine mucosa between BPD group and BD group (with P values above 0.05); At 24 h after injury, the SD group, SPD group, BD group, and BPD group had statistically significant differences in overall comparison of the liver, kidney, and small intestinal mucosal blood flow (F=1 347.52, 125.23, 1 210.84; with P values below 0.05). There were significant differences in blood flow of liver, kidney and small intestine mucosa between BPD group and BD group (t=89.72, 6.57, 10.23; with P values below 0.05); At 48 h after injury, the SD group, SPD group, BD group, and BPD group had statistically significant differences in overall comparison of the liver, kidney, and small intestinal mucosal blood flow (F=1 044.13, 20.69, 174.35; with P values below 0.05). There were statistically statistically significant differences in blood flow between the liver and small intestine mucosa of the BPD group and the BD group (t=51.90, 34.72; with P values below 0.05), and there was no statistically significant difference in renal blood flow (t=0.37, P>0.05); At 72 h after injury, there were statistically significant differences between the liver and kidney blood flow in the SD group, SPD group, BD group, and BPD group (F=328.27, 16.01; with P values below 0.05), there was no statistically significant difference in the small intestinal mucosa blood flow of the 4 groups (P>0.05). There was a statistically significant difference in liver blood flow between BPD group and BD group (t=25.32, P<0.05) and no statistically significant difference in kindey blood flow (P> 0.05). (2)Immediately after the injury and 48 h after the injury, there were no statistically significant difference in the overall pH between the 4 groups (with P values above 0.05); at 6, 24 h, and 72 h after injury, the differences of pH between the 4 groups were statistically significant (F=54.48, 5.68, 1.98; with P values below 0.05), and at 6 and 24 h after injury, there were statistically significant differences in pH between the BPD group and the BD group (t= 5.32, 3.51; with P values below 0.05), at 72 h after injury, there was no statistically statistically significant difference in pH between the two groups (P>0.05). Immediately after the injury and at 6, 24 h after injury, the overall comparison between the 4 groups of oxygen partial pressure groups were statistically significant (F=26.55, 16.34, 2.37; with P values below 0.05). There was no statistically significant difference in oxygen partial pressure between the BPD group and the BD group immediately after injury (P>0.05), and the differences between the two groups were statistically significant at 6 and 24 h after injury (t=4.58, 0.62; with P values below 0.05). At 48 and 72 h after injury, there were no statistically significant differences in the overall comparison between the 4 groups of blood lactic acid groups (with P values above 0.05). Immediately after injury, and at 6, 24 h after injury, the overall comparison between the 4 groups were statistically significant (F=3.12, 61.67, 50.83; with P values below 0.05). There was no statistically significant difference in oxygen partial pressure between the BPD group and the BD group immediately after injury (P> 0.05), and the difference between the two groups were statistically significant at 6 and 24 h after injury (t=6.98, 3.56; with P values below 0.05). The results of experiment two showed: (1) Immediately after injury and 72 h after injury, there were no significant differences in the overall comparison of MAP among the 4 groups (with P values above 0.05). At 6, 24, and 48 h after injury, the overall comparison of MAP between the 4 groups were statistically significant (F=292.73, 104.29, 5.01; with P values below 0.05), and the differences in MAP between the BPD group and the BP group were statistically significant (t=6.02, 6.70, 1.24; with P values below 0.05). (2) At 72 h after injury, the survival rates of the BPD group and the BD group were 70% and 50%, respectively. The difference between the 2 groups was statistically significant (χ2=11.03, P<0.05).

Conclusion

Sodium valproate combines with delayed fluid replacement can significantly increase the perfusion of liver, kidney and intestinal mucosa blood in severe burn-blast combined injury rats, maintain stable blood pressure early after injury, reduce blood lactate levels, and improve the survival rate 72 h after injury.

表1 4组重度烧冲复合伤休克延迟补液大鼠不同时间点肝脏、肾脏和小肠黏膜血流量比较(U, ±s)
组别 鼠数(只) 肝脏血流量
伤后即刻 伤后6 h 伤后24 h 伤后48 h 伤后72 h
SD组 10 427.17±5.00 426.17±12.25 412.32±17.18 420.33±11.86 398.20±12.25
SPD组 10 420.00±5.79 422.50±17.18 420.00±11.73 427.17±12.25 420.00±20.62
BD组 20 420.00±4.79 200.40±9.67 80.10±2.10 153.81±5.84 365.23±11.16
BPD组 20 427.17±4.00 204.37±17.77 265.14±5.12 346.19±6.95 402.32±7.65
F ? 0.71 463.45 1 347.52 1 044.13 328.27
P ? >0.05 <0.05 <0.05 <0.05 <0.05
t1 ? ? 25.29 19.08 13.21 12.96
P1 ? ? <0.05 <0.05 <0.05 <0.05
t2 ? ? 21.62 26.24 14.08 8.46
P2 ? ? <0.05 <0.05 <0.05 <0.05
t3 ? ? 0.48 89.72 51.90 25.32
P3 ? ? >0.05 <0.05 <0.05 <0.05
组别 鼠数(只) 肾脏血流量
伤后即刻 伤后6 h 伤后24 h 伤后48 h 伤后72 h
SD组 10 899.35±43.55 907.52±44.15 921.33±53.37 921.33±53.37 921.33±53.37
SPD组 10 903.21±53.37 944.17±42.99 648.74±18.19 899.35±43.55 778.19±42.15
BD组 20 921.33±49.25 479.34±29.15 548.74±18.04 618.88±17.07 778.19±43.87
BPD组 20 921.33±53.37 483.66±32.21 620.07±44.44 648.16±58.38 770.03±36.01
F ? 0.28 267.27 125.23 20.69 16.01
P ? >0.05 <0.05 <0.05 <0.05 <0.05
t1 ? ? 19.66 13.02 7.36 4.80
P1 ? ? <0.05 <0.05 <0.05 <0.05
t2 ? ? 17.46 11.85 7.10 5.08
P2 ? ? <0.05 <0.05 <0.05 <0.05
t3 ? ? 2.13 6.57 0.37 0.35
P3 ? ? >0.05 <0.05 >0.05 >0.05
组别 鼠数(只) 小肠黏膜血流量
伤后即刻 伤后6 h 伤后24 h 伤后48 h 伤后72 h
SD组 10 721.24±23.12 675.64±16.35 666.60±16.21 693.17±53.44 689.57±53.49
SPD组 10 689.34±34.15 675.64±17.42 659.60±16.21 666.60±16.21 703.66±38.70
BD组 20 702.17±74.94 203.70±35.35 272.52±5.64 351.59±17.15 670.19±13.51
BPD组 20 699.56±82.32 230.54±43.47 351.59±17.15 660.98±13.51 660.98±13.23
F ? 0.32 449.64 1 210.84 174.35 2.31
P ? >0.05 <0.05 <0.05 <0.05 >0.05
t1 ? ? 23.28 32.70 1.43 ?
P1 ? ? <0.05 <0.05 <0.05 ?
t2 ? ? 23.28 32.71 0.65 ?
P2 ? ? <0.05 <0.05 >0.05 ?
t3 ? ? 1.17 10.23 34.72 ?
P3 ? ? >0.05 <0.05 <0.05 ?
表2 4组重度烧冲复合伤休克延迟补液大鼠不同时间点pH值、氧分压及血乳酸比较(±s)
组别 鼠数(只) pH值
伤后即刻 伤后6 h 伤后24 h 伤后48 h 伤后72 h
SD组 10 7.38±0.03 7.36±0.03 7.37±0.02 7.38±0.02 7.38±0.03
SPD组 10 7.36±0.02 7.36±0.03 7.38±0.02 7.39±0.03 7.37±0.02
BD组 20 7.37±0.02 7.06±0.07 7.42±0.02 7.41±0.02 7.42±0.03
BPD组 20 7.38±0.02 7.23±0.04 7.36±0.04 7.39±0.02 7.42±0.03
F ? 1.47 54.48 5.68 1.98 7.21
P ? >0.05 <0.05 <0.05 >0.05 <0.05
t1 ? ? 5.82 0.75 ? 3.00
P1 ? ? <0.05 >0.05 ? <0.05
t2 ? ? 5.82 1.43 ? 3.56
P2 ? ? <0.05 >0.05 ? <0.05
t3 ? ? 5.32 3.51 ? 0.19
P3 ? ? <0.05 <0.05 ? >0.05
组别 鼠数(只) 氧分压(mmHg)
伤后即刻 伤后6 h 伤后24 h 伤后48 h 伤后72 h
SD组 10 95.83±6.97 95.83±6.97 95.83±6.97 95.83±6.97 95.83±6.97
SPD组 10 94.00±7.48 94.00±7.48 94.00±4.43 94.00±7.48 92.17±5.56
BD组 20 121.50±3.94 125.83±6.05 109.67±8.36 97.00±4.34 94.00±7.48
BPD组 20 123.00±7.46 102.50±12.66 103.67±22.27 92.17±5.81 88.17±8.35
F ? 26.55 16.34 2.37 0.58 1.25
P ? <0.05 <0.05 <0.05 >0.05 >0.05
t1 ? 8.33 2.37 1.04 ? ?
P1 ? <0.05 >0.05 >0.05 ? ?
t2 ? 7.79 1.79 1.04 ? ?
P2 ? <0.05 >0.05 >0.05 ? ?
t3 ? 0.56 4.58 0.62 ? ?
P3 ? >0.05 <0.05 <0.05 ? ?
组别 鼠数(只) 血乳酸(mmol/L)
伤后即刻 伤后6 h 伤后24 h 伤后48 h 伤后72 h
SD组 10 1.05±0.14 1.05±0.14 0.88±0.25 1.05±0.14 1.05±0.14
SPD组 10 1.05±0.14 1.24±0.22 1.05±0.14 1.05±0.21 1.05±0.14
BD组 20 0.88±0.25 3.77±0.34 2.23±0.16 1.18±0.14 1.22±0.46
BPD组 20 0.75±0.24 2.24±0.42 1.77±0.28 1.18±0.15 1.42±0.17
F ? 3.12 61.67 50.83 1.59 2.56
P ? <0.05 <0.05 <0.05 >0.05 >0.05
t1 ? 2.61 6.59 5.76 ? ?
P1 ? <0.05 <0.05 <0.05 ? ?
t2 ? 2.61 6.81 5.62 ? ?
P2 ? <0.05 <0.05 <0.05 ? ?
t3 ? 0.88 6.98 3.56 ? ?
P3 ? >0.05 <0.05 <0.05 ? ?
表3 4组重度烧冲复合伤休克延迟补液大鼠伤后不同时间点MAP比较(mmHg, ±s)
图1 各组重度烧冲复合伤休克延迟补液大鼠Kaplan-Meier生存曲线图
[1]
Chai JK, Liu W, Deng HP, et al. A novel model of burn-blast combined injury and its phasic changes of blood coagulation in rats[J]. Shock, 2013, 40(4): 297-302.
[2]
Chai JK, Sheng ZY, Lu JY, et al. Characteristics of and strategies for patients with severe burn-blast combined injury[J]. Chin Med J (Engl), 2007, 120(20): 1783-1787.
[3]
Chang Y, Zhang DH, Hu Q, et al. Usage of density analysis based on micro-CT for studying lung injury associated with burn-blast combined injury[J]. Burns, 2018, 44(4): 905-916.
[4]
Hu S, Ma L, Luo HM, et al. Pyruvate is superior to reverse visceral hypoperfusion in peritoneal resuscitation from hemorrhagic shock in rats[J]. Shock, 2014, 41(4): 355-361.
[5]
Yu W, Hu S, Xie ZY, et al. Pyruvate oral rehydration solution improved visceral function and survival in shock rats[J]. J Surg Res, 2015, 193(1): 344-354.
[6]
Hu S, Hou JY, Wang HB, et al. The effect of valproic acid in alleviating early death in burn shock[J]. Burns, 2012, 38(1): 83-89.
[7]
Williams AM, Bhatti UF, Biesterveld BE, et al. Valproic Acid Improves Survival and Decreases Resuscitation Requirements In a Swine Model of Prolonged Damage Control Resuscitation[J]. J Trauma Acute Care Surg, 2019, 87(2): 393-401.
[8]
Chai JK, Cai JH, Deng HP, et al. Role of neutrophil elastase in lung injury induced by burn-blast combined injury in rats[J]. Burns, 2013, 39(4): 745-753.
[9]
Hu Y, Mao Q, Ye S, et al. Blast-Burn Combined Injury Followed by Immediate Seawater Immersion Induces Hemodynamic Changes and Metabolic Acidosis: An Experimental Study in a Canine Model[J]. Clin Lab, 2016, 62(7): 1193-1199.
[10]
胡泉,柴家科,杨红明. 烧冲复合伤肺损伤的研究进展[J]. 解放军医学杂志,2013, 38(5): 428-432.
[11]
Jonkam CC, Bansal K, Traber DL, et al. Pulmonary vascular permeability changes in an ovine model of methicillin-resistant Staphylococcus aureus sepsis[J]. Crit Care, 2009, 13(1): R19.
[12]
Yamamoto S, DeWitt DS, Prough DS. Impact & Blast Traumatic Brain Injury: Implications for Therapy[J]. Molecules, 2018, 23(2). pii: E245.
[13]
Scott TE, Kirkman E, Haque M, et al. Primary blast lung injury-a review[J]. Br J Anaesth, 2017, 118(3): 311-316.
[14]
Duan C, Chen K, Yang G, et al. HIF-1α regulates Cx40-dependent vasodilatation following hemorrhagic shock in rats[J]. Am J Transl Res, 2017, 9(3): 1277-1286.
[15]
Jiang H, Huang Y, Xu H, et al. Inhibition of hypoxia inducible factor-1α ameliorates lung injury induced by trauma and hemorrhagic shock in rats[J]. Acta Pharmacol Sin, 2012, 33(5): 635-643.
[16]
Cheng X, Liu Z, Liu B, et al. Selective histone deacetylase 6 inhibition prolongs survival in a lethal two-hit model[J]. J Surg Res, 2015, 197(1): 39-44.
[17]
Zuckermann AM, La Ragione RM, Baines DL, et al. Valproic acid protects against haemorrhagic shock-induced signalling changes via PPARgamma activation in an in vitro model[J]. Br J Pharmacol, 2015, 172(22): 5306-5317.
[18]
Luo HM, Du MH, Lin ZL, et al. Valproic acid treatment inhibits hypoxia-inducible factor 1α accumulation and protects against burn-induced gut barrier dysfunction in a rodent model[J]. PLoS One, 2013, 8(10): e77523.
[19]
Luo HM, Hu S, Bai HY, et al. Valproic acid treatment attenuates caspase-3 activation and improves survival after lethal burn injury in a rodent model[J]. J Burn Care Res, 2014, 35(2): e93-e98.
[20]
Higgins GA, Georgoff P, Nikolian V, et al. Network Reconstruction Reveals that Valproic Acid Activates Neurogenic Transcriptional Programs in Adult Brain Following Traumatic Injury[J]. Pharm Res, 2017, 34(8): 1658-1672.
[1] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[2] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[3] 靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英. 产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 428-436.
[4] 涂家金, 廖武强, 刘金晶, 涂志鹏, 毛远桂. 严重烧伤患者鲍曼不动杆菌血流感染的危险因素及预后分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 491-497.
[5] 王成, 张慧君, 覃凤均, 陈辉. 网状植皮与ReCell表皮细胞种植在深Ⅱ度烧伤治疗中的疗效对比[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 498-502.
[6] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[7] 中华医学会烧伤外科学分会小儿烧伤学组. 儿童烧伤早期休克液体复苏专家共识(2023版)[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 371-376.
[8] 蔡柔妹, 曾洁梅, 黄伟丽, 谢文敏, 刘燕丹, 吴漫君, 蔡楚燕. 利用QC小组干预降低经烧伤创面股静脉置管导管相关性感染发生率的临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 399-404.
[9] 魏强, 张明祥, 陈强谱, 孙宝房. 增味小承气汤对梗阻性黄疸大鼠胃肠道动力的影响[J]. 中华普通外科学文献(电子版), 2023, 17(04): 267-270.
[10] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[11] 方可, 笪欢欢, 汪君, 孙瑞祥, 王涛, 李阳, 江海娇, 鲁卫华. ECMO联合肾上腺切除救治妊娠期嗜铬细胞瘤并儿茶酚胺心肌病一例并文献回顾[J]. 中华重症医学电子杂志, 2023, 09(03): 304-310.
[12] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[13] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[14] 周洋, 曹学, 赵飞, 郑波, 查惠娟, 蒋娜, 罗俊, 熊伟. 血清miR-22、HSPB1水平与急性Stanford A型主动脉夹层患者预后的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 243-248.
[15] 王燕, 郭蕊, 王淑杰. 老年烧伤气管切开患者死亡风险诊断模型构建及对策分析[J]. 中华诊断学电子杂志, 2023, 11(04): 249-253.
阅读次数
全文


摘要