切换至 "中华医学电子期刊资源库"

中华损伤与修复杂志(电子版) ›› 2020, Vol. 15 ›› Issue (01) : 10 -17. doi: 10.3877/cma.j.issn.1673-9450.2020.01.003

所属专题: 文献

论著

丙戊酸钠对重度烧冲复合伤休克延迟补液大鼠内脏组织灌流和生存率的影响
吴育寿1, 岳晓彤1, 柴家科2,(), 畅阳2, 刘玲英2, 刘伟1, 韩绍芳2, 王晓腾2, 胡森3   
  1. 1. 100853 北京,解放军医学院研究生院;100048 北京,解放军总医院第四医学中心全军烧伤研究所
    2. 100048 北京,解放军总医院第四医学中心全军烧伤研究所
    3. 100853 北京,解放军总医院医学创新研究部创伤修复与组织再生研究中心
  • 收稿日期:2019-12-13 出版日期:2020-02-01
  • 通信作者: 柴家科
  • 基金资助:
    军委后勤保障部重大项目(AWS15J003,ALB19J001); 国家自然科学基金面上项目(81471872,81571894,81772067)

Effect of sodium valproate on visceral tissue perfusion and survival rates in rats with delayed fluid resuscitation after severe burn-blast combined injury

Yushou Wu1, Xiaotong Yue1, Jiake Chai2,(), Yang Chang2, Lingying Liu2, Wei Liu1, Shaofang Han2, Xiaoteng Wang2, Sen Hu3   

  1. 1. Department of Graduate, Medical School of Chinese PLA, Beijing 100853, China;Burn Institute, Fourth Medical Center of PLA General Hospital, Beijing 100048, China
    2. Department of Graduate, Medical School of Chinese PLA, Beijing 100853, China
    3. Research Center of Trauma Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100853, China
  • Received:2019-12-13 Published:2020-02-01
  • Corresponding author: Jiake Chai
  • About author:
    Corresponding author: Chai Jiake, Email:
引用本文:

吴育寿, 岳晓彤, 柴家科, 畅阳, 刘玲英, 刘伟, 韩绍芳, 王晓腾, 胡森. 丙戊酸钠对重度烧冲复合伤休克延迟补液大鼠内脏组织灌流和生存率的影响[J/OL]. 中华损伤与修复杂志(电子版), 2020, 15(01): 10-17.

Yushou Wu, Xiaotong Yue, Jiake Chai, Yang Chang, Lingying Liu, Wei Liu, Shaofang Han, Xiaoteng Wang, Sen Hu. Effect of sodium valproate on visceral tissue perfusion and survival rates in rats with delayed fluid resuscitation after severe burn-blast combined injury[J/OL]. Chinese Journal of Injury Repair and Wound Healing(Electronic Edition), 2020, 15(01): 10-17.

目的

探讨丙戊酸钠对重度烧冲复合伤休克延迟补液大鼠内脏组织灌流和生存率的影响。

方法

共360只雄性SD大鼠,(1)实验一,选择300只大鼠,按照随机数字表法分为假伤+延迟补液组(SD组,n=50)、假伤+丙戊酸钠+延迟补液组(SPD组,n=50)、烧冲复合伤+延迟补液组(BD组,n=100)、烧冲复合伤+丙戊酸钠+延迟补液组(BPD组,n=100)。SD组和SPD组大鼠37 ℃水浴浸泡背部12 s,腹部6 s;BD组和BPD组先用5 g高爆炸药距离大鼠50 cm爆炸致中度冲击伤,然后立即94 ℃沸水浸泡背部12 s,腹部6 s,致50%总体表面积Ⅲ度烧伤;SPD组和BPD组伤后即刻皮下注射丙戊酸钠(300 mg/kg)。SD组、SPD组、BPD组和BD组于伤后6、24 h分别按照Parkland公式腹腔内注射0.9%氯化钠溶液进行补液。于伤后即刻,伤后6、24、48、72 h 5个时间点,每个时间点均从SD组、SPD组、BD组、BPD组选择10、10、20、20只大鼠进行各脏器血流量和血气分析。(2)实验二,选取剩余的60只大鼠,按随机数字表法也分为SD组(n=10)、SPD组(n=10)、BD组(n=20)、BPD组(n=20)。于造模前48 h进行颈动脉置管。各组大鼠造模、处理同实验一操作。于伤后即刻,伤后6、24、48、72 h 5个时间点,检测各组大鼠平均动脉压(MAP),同时计算各组大鼠生存率。数据比较采用单因素方差分析、t检验、log-rank检验和χ2检验。

结果

实验一结果显示:(1)伤后即刻,4组肝脏、肾脏和小肠黏膜血流量比较,差异均无统计学意义(P值均大于0.05);伤后6 h,4组肝脏、肾脏和小肠黏膜血流量组间总体比较,差异均有统计学意义(F=463.45、267.27、449.64,P值均小于0.05),BPD组与BD组肝脏、肾脏和小肠黏膜血流量比较,差异均无统计学意义(P值均大于0.05);伤后24 h,4组肝脏、肾脏和小肠黏膜血流量组间总体比较,差异均有统计学意义(F=1 347.52、125.23、1 210.84,P值均小于0.05),BPD组与BD组肝脏、肾脏和小肠黏膜血流量比较,差异均有统计学意义(t=89.72、6.57、10.23,P值均小于0.05);伤后48 h,4组肝脏、肾脏和小肠黏膜血流量组间总体比较,差异均有统计学意义(F=1 044.13、20.69、174.35,P值均小于0.05),BPD组与BD组肝脏和小肠黏膜血流量比较,差异均有统计学意义(t=51.90、34.72,P值均小于0.05),肾脏血流量比较差异无统计学意义(t=0.37,P>0.05);伤后72 h,4组肝脏、肾脏血流量组间总体比较,差异均有统计学意义(F=328.27,16.01,P值均小于0.05),小肠黏膜血流量比较,差异无统计学意义(P>0.05),BPD组与BD组肝脏血流量比较,差异有统计学意义(t=25.32,P<0.05),肾脏血流量比较,差异无统计学意义(P>0.05)。(2)伤后即刻和伤后48 h,4组pH值组间总体比较,差异均无统计学意义(P值均大于0.05);伤后6、24、72 h,4组pH值组间总体比较,差异均有统计学意义(F=54.48、5.68、1.98,P值均小于0.05),伤后6、24 h,BPD组与BD组pH值比较差异均有统计学意义(t=5.32、3.51,P值均小于0.05),伤后72 h,2组pH值比较差异无统计学意义(P>0.05);伤后即刻、伤后6、24 h,4组氧分压组间总体比较,差异均有统计学意义(F=26.55、16.34、2.37,P值均小于0.05),伤后即刻BPD组和BD组氧分压比较差异无统计学意义(P>0.05),伤后6、24 h 2组比较差异均有统计学意义(t=4.58、0.62,P值均小于0.05);伤后48、72 h,4组血乳酸组间总体比较,差异均无统计学意义(P值均大于0.05),伤后即刻、伤后6、24 h,4组血乳酸总体比较,差异均有统计学意义(F=3.12、61.67、50.83,P值均小于0.05),伤后即刻BPD组和BD组氧分压比较,差异无统计学意义(P>0.05),伤后6、24 h, 2组比较差异均有统计学意义(t=6.98、3.56,P值均小于0.05)。实验二结果显示:(1)伤后即刻和伤后72 h,4组MAP总体比较差异均无统计学意义(P值均大于0.05),伤后6、24、48 h,4组MAP总体比较差异均有统计学意义(F=292.73、104.29、5.01,P值均小于0.05),BPD组与BP组MAP比较,差异均有统计学差异(t=6.02、6.70、1.24,P值均小于0.05)。(2)伤后72 h,BPD组和BD组的生存率分别为70%和50%,2组比较差异有统计学意义(χ2=11.03,P<0.05)。

结论

丙戊酸钠复合延迟补液能显著增加重度烧冲复合伤休克大鼠肝脏、肾脏和肠道血流灌注,维持伤后早期的血压稳定,降低血乳酸水平,改善伤后72 h存活率。

Objective

To investigate the effects of sodium valproate on visceral tissue perfusion and survival rate of abdominal organs in rats with delayed fluid resuscitation after severe burn-blast combined injury.

Methods

A total of 360 male SD rats, (1) Experiment one, 300 rats were selected and divided into sham injury + delayed fluid resuscitation group (SD group, n=50), sham injury + sodium valproate + delayed fluid resuscitation group (SPD group, n=50), burn-rush combined injury + delayed fluid resuscitation group (BD group, n=100) and burn-rush combined injury + sodium valproate + delayed fluid resuscitation group (BPD group, n=100) according to the random number table method. The SD group and SPD group were soaked the back of rats in the 37 ℃ water for 12 s and the abdomen for 6 s. The BD group and BPD group were blasted with 5 g high explosive at a distance of 50 cm from the rat to cause moderate impact injury, and then immediately immersed the back of rats in boiling water at 94 ℃ for 12 s, abdominal for 6 s, causing 50% total body surface area of full thickness burns. SPD group and BPD group were injected subcutaneously with sodium valproate (300 mg/kg) immediately after injury. SD group, SPD group, BPD group and BD group were injected intraperitoneally with 0.9% sodium chloride solution according to the Parkland formula at 6, 24 h after injury for rehydration. Immediately after the injury, 6, 24, 48, 72 h after injury, each time point 10, 10, 20, 20 rats were selected from the SD group, SPD group, BD group, BPD group for visceral blood flow and blood gas analysis. (2)Experiment two, the rest of the 60 rats were divided into 4 groups according to the random number table method: SD group(n=10), SPD group(n=10), BD group(n=20) and BPD group(n=20). The modeling and treatment of the rats in each group was the same as experiment one. Carotid arteries were placed in all rats 48 h before modeling. The mean arterial pressure (MAP) of rats in each group was measured at 5 time points immediately after injury and at 6, 24, 48, 72 h after injury, and the survival rate of each group was also calculated. Data were processed with one-way analysis of variance, t text, the log-rank test and χ2 test.

Results

The results of experiment one showed: (1) Immediately after injury, there were no statistically significant differences in the blood flow of liver, kidney and small intestine mucosa in the 4 groups (with P values above 0.05). At 6 h after injury, the SD group, SPD group, BD group, and BPD group had statistically significant differences in overall comparison of the liver, kidney, and small intestinal mucosal blood flow groups (F=463.45, 267.27, 449.64; with P values below 0.05). There were no statistically significant differences in blood flow of liver, kidney and small intestine mucosa between BPD group and BD group (with P values above 0.05); At 24 h after injury, the SD group, SPD group, BD group, and BPD group had statistically significant differences in overall comparison of the liver, kidney, and small intestinal mucosal blood flow (F=1 347.52, 125.23, 1 210.84; with P values below 0.05). There were significant differences in blood flow of liver, kidney and small intestine mucosa between BPD group and BD group (t=89.72, 6.57, 10.23; with P values below 0.05); At 48 h after injury, the SD group, SPD group, BD group, and BPD group had statistically significant differences in overall comparison of the liver, kidney, and small intestinal mucosal blood flow (F=1 044.13, 20.69, 174.35; with P values below 0.05). There were statistically statistically significant differences in blood flow between the liver and small intestine mucosa of the BPD group and the BD group (t=51.90, 34.72; with P values below 0.05), and there was no statistically significant difference in renal blood flow (t=0.37, P>0.05); At 72 h after injury, there were statistically significant differences between the liver and kidney blood flow in the SD group, SPD group, BD group, and BPD group (F=328.27, 16.01; with P values below 0.05), there was no statistically significant difference in the small intestinal mucosa blood flow of the 4 groups (P>0.05). There was a statistically significant difference in liver blood flow between BPD group and BD group (t=25.32, P<0.05) and no statistically significant difference in kindey blood flow (P> 0.05). (2)Immediately after the injury and 48 h after the injury, there were no statistically significant difference in the overall pH between the 4 groups (with P values above 0.05); at 6, 24 h, and 72 h after injury, the differences of pH between the 4 groups were statistically significant (F=54.48, 5.68, 1.98; with P values below 0.05), and at 6 and 24 h after injury, there were statistically significant differences in pH between the BPD group and the BD group (t= 5.32, 3.51; with P values below 0.05), at 72 h after injury, there was no statistically statistically significant difference in pH between the two groups (P>0.05). Immediately after the injury and at 6, 24 h after injury, the overall comparison between the 4 groups of oxygen partial pressure groups were statistically significant (F=26.55, 16.34, 2.37; with P values below 0.05). There was no statistically significant difference in oxygen partial pressure between the BPD group and the BD group immediately after injury (P>0.05), and the differences between the two groups were statistically significant at 6 and 24 h after injury (t=4.58, 0.62; with P values below 0.05). At 48 and 72 h after injury, there were no statistically significant differences in the overall comparison between the 4 groups of blood lactic acid groups (with P values above 0.05). Immediately after injury, and at 6, 24 h after injury, the overall comparison between the 4 groups were statistically significant (F=3.12, 61.67, 50.83; with P values below 0.05). There was no statistically significant difference in oxygen partial pressure between the BPD group and the BD group immediately after injury (P> 0.05), and the difference between the two groups were statistically significant at 6 and 24 h after injury (t=6.98, 3.56; with P values below 0.05). The results of experiment two showed: (1) Immediately after injury and 72 h after injury, there were no significant differences in the overall comparison of MAP among the 4 groups (with P values above 0.05). At 6, 24, and 48 h after injury, the overall comparison of MAP between the 4 groups were statistically significant (F=292.73, 104.29, 5.01; with P values below 0.05), and the differences in MAP between the BPD group and the BP group were statistically significant (t=6.02, 6.70, 1.24; with P values below 0.05). (2) At 72 h after injury, the survival rates of the BPD group and the BD group were 70% and 50%, respectively. The difference between the 2 groups was statistically significant (χ2=11.03, P<0.05).

Conclusion

Sodium valproate combines with delayed fluid replacement can significantly increase the perfusion of liver, kidney and intestinal mucosa blood in severe burn-blast combined injury rats, maintain stable blood pressure early after injury, reduce blood lactate levels, and improve the survival rate 72 h after injury.

表1 4组重度烧冲复合伤休克延迟补液大鼠不同时间点肝脏、肾脏和小肠黏膜血流量比较(U, ±s)
组别 鼠数(只) 肝脏血流量
伤后即刻 伤后6 h 伤后24 h 伤后48 h 伤后72 h
SD组 10 427.17±5.00 426.17±12.25 412.32±17.18 420.33±11.86 398.20±12.25
SPD组 10 420.00±5.79 422.50±17.18 420.00±11.73 427.17±12.25 420.00±20.62
BD组 20 420.00±4.79 200.40±9.67 80.10±2.10 153.81±5.84 365.23±11.16
BPD组 20 427.17±4.00 204.37±17.77 265.14±5.12 346.19±6.95 402.32±7.65
F ? 0.71 463.45 1 347.52 1 044.13 328.27
P ? >0.05 <0.05 <0.05 <0.05 <0.05
t1 ? ? 25.29 19.08 13.21 12.96
P1 ? ? <0.05 <0.05 <0.05 <0.05
t2 ? ? 21.62 26.24 14.08 8.46
P2 ? ? <0.05 <0.05 <0.05 <0.05
t3 ? ? 0.48 89.72 51.90 25.32
P3 ? ? >0.05 <0.05 <0.05 <0.05
组别 鼠数(只) 肾脏血流量
伤后即刻 伤后6 h 伤后24 h 伤后48 h 伤后72 h
SD组 10 899.35±43.55 907.52±44.15 921.33±53.37 921.33±53.37 921.33±53.37
SPD组 10 903.21±53.37 944.17±42.99 648.74±18.19 899.35±43.55 778.19±42.15
BD组 20 921.33±49.25 479.34±29.15 548.74±18.04 618.88±17.07 778.19±43.87
BPD组 20 921.33±53.37 483.66±32.21 620.07±44.44 648.16±58.38 770.03±36.01
F ? 0.28 267.27 125.23 20.69 16.01
P ? >0.05 <0.05 <0.05 <0.05 <0.05
t1 ? ? 19.66 13.02 7.36 4.80
P1 ? ? <0.05 <0.05 <0.05 <0.05
t2 ? ? 17.46 11.85 7.10 5.08
P2 ? ? <0.05 <0.05 <0.05 <0.05
t3 ? ? 2.13 6.57 0.37 0.35
P3 ? ? >0.05 <0.05 >0.05 >0.05
组别 鼠数(只) 小肠黏膜血流量
伤后即刻 伤后6 h 伤后24 h 伤后48 h 伤后72 h
SD组 10 721.24±23.12 675.64±16.35 666.60±16.21 693.17±53.44 689.57±53.49
SPD组 10 689.34±34.15 675.64±17.42 659.60±16.21 666.60±16.21 703.66±38.70
BD组 20 702.17±74.94 203.70±35.35 272.52±5.64 351.59±17.15 670.19±13.51
BPD组 20 699.56±82.32 230.54±43.47 351.59±17.15 660.98±13.51 660.98±13.23
F ? 0.32 449.64 1 210.84 174.35 2.31
P ? >0.05 <0.05 <0.05 <0.05 >0.05
t1 ? ? 23.28 32.70 1.43 ?
P1 ? ? <0.05 <0.05 <0.05 ?
t2 ? ? 23.28 32.71 0.65 ?
P2 ? ? <0.05 <0.05 >0.05 ?
t3 ? ? 1.17 10.23 34.72 ?
P3 ? ? >0.05 <0.05 <0.05 ?
表2 4组重度烧冲复合伤休克延迟补液大鼠不同时间点pH值、氧分压及血乳酸比较(±s)
组别 鼠数(只) pH值
伤后即刻 伤后6 h 伤后24 h 伤后48 h 伤后72 h
SD组 10 7.38±0.03 7.36±0.03 7.37±0.02 7.38±0.02 7.38±0.03
SPD组 10 7.36±0.02 7.36±0.03 7.38±0.02 7.39±0.03 7.37±0.02
BD组 20 7.37±0.02 7.06±0.07 7.42±0.02 7.41±0.02 7.42±0.03
BPD组 20 7.38±0.02 7.23±0.04 7.36±0.04 7.39±0.02 7.42±0.03
F ? 1.47 54.48 5.68 1.98 7.21
P ? >0.05 <0.05 <0.05 >0.05 <0.05
t1 ? ? 5.82 0.75 ? 3.00
P1 ? ? <0.05 >0.05 ? <0.05
t2 ? ? 5.82 1.43 ? 3.56
P2 ? ? <0.05 >0.05 ? <0.05
t3 ? ? 5.32 3.51 ? 0.19
P3 ? ? <0.05 <0.05 ? >0.05
组别 鼠数(只) 氧分压(mmHg)
伤后即刻 伤后6 h 伤后24 h 伤后48 h 伤后72 h
SD组 10 95.83±6.97 95.83±6.97 95.83±6.97 95.83±6.97 95.83±6.97
SPD组 10 94.00±7.48 94.00±7.48 94.00±4.43 94.00±7.48 92.17±5.56
BD组 20 121.50±3.94 125.83±6.05 109.67±8.36 97.00±4.34 94.00±7.48
BPD组 20 123.00±7.46 102.50±12.66 103.67±22.27 92.17±5.81 88.17±8.35
F ? 26.55 16.34 2.37 0.58 1.25
P ? <0.05 <0.05 <0.05 >0.05 >0.05
t1 ? 8.33 2.37 1.04 ? ?
P1 ? <0.05 >0.05 >0.05 ? ?
t2 ? 7.79 1.79 1.04 ? ?
P2 ? <0.05 >0.05 >0.05 ? ?
t3 ? 0.56 4.58 0.62 ? ?
P3 ? >0.05 <0.05 <0.05 ? ?
组别 鼠数(只) 血乳酸(mmol/L)
伤后即刻 伤后6 h 伤后24 h 伤后48 h 伤后72 h
SD组 10 1.05±0.14 1.05±0.14 0.88±0.25 1.05±0.14 1.05±0.14
SPD组 10 1.05±0.14 1.24±0.22 1.05±0.14 1.05±0.21 1.05±0.14
BD组 20 0.88±0.25 3.77±0.34 2.23±0.16 1.18±0.14 1.22±0.46
BPD组 20 0.75±0.24 2.24±0.42 1.77±0.28 1.18±0.15 1.42±0.17
F ? 3.12 61.67 50.83 1.59 2.56
P ? <0.05 <0.05 <0.05 >0.05 >0.05
t1 ? 2.61 6.59 5.76 ? ?
P1 ? <0.05 <0.05 <0.05 ? ?
t2 ? 2.61 6.81 5.62 ? ?
P2 ? <0.05 <0.05 <0.05 ? ?
t3 ? 0.88 6.98 3.56 ? ?
P3 ? >0.05 <0.05 <0.05 ? ?
表3 4组重度烧冲复合伤休克延迟补液大鼠伤后不同时间点MAP比较(mmHg, ±s)
图1 各组重度烧冲复合伤休克延迟补液大鼠Kaplan-Meier生存曲线图
[1]
Chai JK, Liu W, Deng HP, et al. A novel model of burn-blast combined injury and its phasic changes of blood coagulation in rats[J]. Shock, 2013, 40(4): 297-302.
[2]
Chai JK, Sheng ZY, Lu JY, et al. Characteristics of and strategies for patients with severe burn-blast combined injury[J]. Chin Med J (Engl), 2007, 120(20): 1783-1787.
[3]
Chang Y, Zhang DH, Hu Q, et al. Usage of density analysis based on micro-CT for studying lung injury associated with burn-blast combined injury[J]. Burns, 2018, 44(4): 905-916.
[4]
Hu S, Ma L, Luo HM, et al. Pyruvate is superior to reverse visceral hypoperfusion in peritoneal resuscitation from hemorrhagic shock in rats[J]. Shock, 2014, 41(4): 355-361.
[5]
Yu W, Hu S, Xie ZY, et al. Pyruvate oral rehydration solution improved visceral function and survival in shock rats[J]. J Surg Res, 2015, 193(1): 344-354.
[6]
Hu S, Hou JY, Wang HB, et al. The effect of valproic acid in alleviating early death in burn shock[J]. Burns, 2012, 38(1): 83-89.
[7]
Williams AM, Bhatti UF, Biesterveld BE, et al. Valproic Acid Improves Survival and Decreases Resuscitation Requirements In a Swine Model of Prolonged Damage Control Resuscitation[J]. J Trauma Acute Care Surg, 2019, 87(2): 393-401.
[8]
Chai JK, Cai JH, Deng HP, et al. Role of neutrophil elastase in lung injury induced by burn-blast combined injury in rats[J]. Burns, 2013, 39(4): 745-753.
[9]
Hu Y, Mao Q, Ye S, et al. Blast-Burn Combined Injury Followed by Immediate Seawater Immersion Induces Hemodynamic Changes and Metabolic Acidosis: An Experimental Study in a Canine Model[J]. Clin Lab, 2016, 62(7): 1193-1199.
[10]
胡泉,柴家科,杨红明. 烧冲复合伤肺损伤的研究进展[J]. 解放军医学杂志,2013, 38(5): 428-432.
[11]
Jonkam CC, Bansal K, Traber DL, et al. Pulmonary vascular permeability changes in an ovine model of methicillin-resistant Staphylococcus aureus sepsis[J]. Crit Care, 2009, 13(1): R19.
[12]
Yamamoto S, DeWitt DS, Prough DS. Impact & Blast Traumatic Brain Injury: Implications for Therapy[J]. Molecules, 2018, 23(2). pii: E245.
[13]
Scott TE, Kirkman E, Haque M, et al. Primary blast lung injury-a review[J]. Br J Anaesth, 2017, 118(3): 311-316.
[14]
Duan C, Chen K, Yang G, et al. HIF-1α regulates Cx40-dependent vasodilatation following hemorrhagic shock in rats[J]. Am J Transl Res, 2017, 9(3): 1277-1286.
[15]
Jiang H, Huang Y, Xu H, et al. Inhibition of hypoxia inducible factor-1α ameliorates lung injury induced by trauma and hemorrhagic shock in rats[J]. Acta Pharmacol Sin, 2012, 33(5): 635-643.
[16]
Cheng X, Liu Z, Liu B, et al. Selective histone deacetylase 6 inhibition prolongs survival in a lethal two-hit model[J]. J Surg Res, 2015, 197(1): 39-44.
[17]
Zuckermann AM, La Ragione RM, Baines DL, et al. Valproic acid protects against haemorrhagic shock-induced signalling changes via PPARgamma activation in an in vitro model[J]. Br J Pharmacol, 2015, 172(22): 5306-5317.
[18]
Luo HM, Du MH, Lin ZL, et al. Valproic acid treatment inhibits hypoxia-inducible factor 1α accumulation and protects against burn-induced gut barrier dysfunction in a rodent model[J]. PLoS One, 2013, 8(10): e77523.
[19]
Luo HM, Hu S, Bai HY, et al. Valproic acid treatment attenuates caspase-3 activation and improves survival after lethal burn injury in a rodent model[J]. J Burn Care Res, 2014, 35(2): e93-e98.
[20]
Higgins GA, Georgoff P, Nikolian V, et al. Network Reconstruction Reveals that Valproic Acid Activates Neurogenic Transcriptional Programs in Adult Brain Following Traumatic Injury[J]. Pharm Res, 2017, 34(8): 1658-1672.
[1] 刘思锐, 赵辰阳, 张睿, 张一休, 杨萌. 多普勒超声对孕鼠子宫动脉不同节段血流动力学参数的评估[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 877-883.
[2] 高小康, 张净宇, 刘金伟, 田东牧, 胡永成, 徐卫国. 连接型人工膝关节假体运动和负重模式的演变和进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 505-516.
[3] 王宏宇, 巴特, 黄瑞娟, 陈强, 闫增强. 亲属头皮加自体头皮混合移植接力在大面积深度烧伤创面修复中的应用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 554-554.
[4] 李煜, 王鹏, 陆翮, 冯蓉琴, 韩军涛. 采用低频脉冲电刺激治疗深Ⅱ度烧伤创面的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 474-478.
[5] 彭玲, 吴红, 宛仕勇, 陈斓, 叶子青, 周静. 胶原酶软膏联合水胶体敷料应用于深Ⅱ度烧伤创面治疗的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 511-516.
[6] 林同辉, 杨卫玺. 股前外侧穿支皮瓣在电烧伤治疗中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 526-530.
[7] 张嘉炜, 王瑞, 张克诚, 易磊, 周增丁. 烧烫伤创面深度智能检测模型P-YOLO的建立及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 379-385.
[8] 毛书雷, 张元海, 王杰, 倪良方, 王新刚, 邹雁, 王荣娟, 吴军梅, 张建芬. 区域性静脉灌注葡萄糖酸钙治疗手指氢氟酸烧伤的临床疗效和安全性分析[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 386-392.
[9] 孙俊锋, 涂家金, 付丹, 蒋满香, 刘金晶, 崔乃硕. 手部烧伤瘢痕挛缩畸形整形术后综合康复联合点阵二氧化碳激光治疗的临床效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 411-415.
[10] 杨新园, 王淑君, 何成, 宋喜鹤, 刘丽芸. 预防与处理危重烧伤患者经外周静脉穿刺置入中心静脉导管堵塞的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 443-446.
[11] 徐保平, 彭怀文, 喻怀斌, 王晓涛. 新型冠状病毒肺炎继发糖尿病酮症酸中毒合并肝门静脉积气一例[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 250-255.
[12] 刘锦程, 王斌, 张雯, 张明周, 刘禹, 叶东樊, 黄赞胜, 邱凌霄, 卿斌, 王创业, 王南博, 王苹, 郭宇航, 周培花, 程秋霞, 徐智. 肺泡灌洗液RASSF1A及SHOX2甲基化联合径向超声特征对肺结节性质鉴别诊断的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 505-511.
[13] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
[14] 傅新露, 李之岳, 卢丹. 妊娠合并结肠癌穿孔致脓毒症休克一例并文献复习[J/OL]. 中华产科急救电子杂志, 2024, 13(04): 227-231.
[15] 詹维强, 李梦蝶, 涂玉玲, 郭艳, 芦乙滨, 史新格, 许明. 早期CRRT联合VA-ECMO治疗难治性心源性休克的临床效果[J/OL]. 中华卫生应急电子杂志, 2024, 10(05): 260-268.
阅读次数
全文


摘要